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In this part . . .

I give you an overview of Calculus II, plus a review
of Pre-Calculus and Calculus I. You discover how to

measure the areas of weird shapes by using a new tool:
the definite integral. I show you the connection between
differentiation, which you know from Calculus I, and inte-
gration. And you see how this connection provides a
useful way to solve area problems.
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Chapter 1

An Aerial View 
of the Area Problem

In This Chapter
� Measuring the area of shapes by using classical and analytic geometry

� Understanding integration as a solution to the area problem

� Building a formula for calculating definite integrals using Riemann sums

� Applying integration to the real world

� Considering sequences and series

� Looking ahead at some advanced math

Humans have been measuring the area of shapes for thousands of years.
One practical use for this skill is measuring the area of a parcel of land.

Measuring the area of a square or a rectangle is simple, so land tends to get
divided into these shapes.

Discovering the area of a triangle, circle, or polygon is also easy, but as shapes
get more unusual, measuring them gets harder. Although the Greeks were
familiar with the conic sections — parabolas, ellipses, and hyperbolas — they
couldn’t reliably measure shapes with edges based on these figures.

Descartes’s invention of analytic geometry — studying lines and curves as
equations plotted on a graph — brought great insight into the relationships
among the conic sections. But even analytic geometry didn’t answer the
question of how to measure the area inside a shape that includes a curve.

In this chapter, I show you how integral calculus (integration for short) devel-
oped from attempts to answer this basic question, called the area problem.
With this introduction to the definite integral, you’re ready to look at the
practicalities of measuring area. The key to approximating an area that you
don’t know how to measure is to slice it into shapes that you do know how to
measure (for example, rectangles).
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Slicing things up is the basis for the Riemann sum, which allows you to turn a
sequence of closer and closer approximations of a given area into a limit that
gives you the exact area that you’re seeking. I walk you through a step-by-
step process that shows you exactly how the formal definition for the definite
integral arises intuitively as you start slicing unruly shapes into nice, crisp
rectangles.

Checking out the Area
Finding the area of certain basic shapes — squares, rectangles, triangles, and
circles — is easy. But a reliable method for finding the area of shapes contain-
ing more esoteric curves eluded mathematicians for centuries. In this sec-
tion, I give you the basics of how this problem, called the area problem, is
formulated in terms of a new concept, the definite integral.

The definite integral represents the area on a graph bounded by a function, the
x-axis, and two vertical lines called the limits of integration. Without getting too
deep into the computational methods of integration, I give you the basics of
how to state the area problem formally in terms of the definite integral.

Comparing classical and analytic geometry
In classical geometry, you discover a variety of simple formulas for finding the
area of different shapes. For example, Figure 1-1 shows the formulas for the
area of a rectangle, a triangle, and a circle.

width = 1

height = 2

height = 1

base = 1

Area = width ⋅ height = 2 ==Area = Area = π ⋅ radius2 = π

radius = 1

base ⋅ height
2

1
2

Figure 1-1:
Formulas for
the area of a
rectangle, a
triangle, and

a circle.
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When you move on to analytic geometry — geometry on the Cartesian
graph — you gain new perspectives on classical geometry. Analytic geometry
provides a connection between algebra and classical geometry. You find that
circles, squares, and triangles — and many other figures — can be repre-
sented by equations or sets of equations, as shown in Figure 1-2.

You can still use the trusty old methods of classical geometry to find the
areas of these figures. But analytic geometry opens up more possibilities —
and more problems.

Discovering a new area of study
Figure 1-3 illustrates three curves that are much easier to study with analytic
geometry than with classical geometry: a parabola, an ellipse, and a hyperbola.

1

2

1

1

1

1

yyy

xxx

–1

–1

Figure 1-2:
A rectangle,

a triangle,
and a circle

embedded
on the
graph.
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Wisdom of the ancients
Long before calculus was invented, the ancient
Greek mathematician Archimedes used his
method of exhaustion to calculate the exact
area of a segment of a parabola. Indian mathe-
maticians also developed quadrature methods

for some difficult shapes before Europeans
began their investigations in the 17th century.

These methods anticipated some of the methods
of calculus. But before calculus, no single theory
could measure the area under arbitrary curves.
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Analytic geometry gives a very detailed account of the connection between
algebraic equations and curves on a graph. But analytic geometry doesn’t tell
you how to find the shaded areas shown in Figure 1-3.

Similarly, Figure 1-4 shows three more equations placed on the graph: a sine
curve, an exponential curve, and a logarithmic curve.

Again, analytic geometry provides a connection between these equations and
how they appear as curves on the graph. But it doesn’t tell you how to find
any of the shaded areas in Figure 1-4.

y

x

1

y

x

1

π–π 2π 1

y

x

y  = sin x y  = ex
y  = ln x

–1

Figure 1-4:
A sine

curve, an
exponential

curve, and a
logarithmic

curve
embedded

on the
graph.
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Figure 1-3:
A parabola,

an ellipse,
and a

hyperbola
embedded

on the
graph.
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Generalizing the area problem
Notice that in all the examples in the previous section, I shade each area in a
very specific way. Above, the area is bounded by a function. Below, it’s bounded
by the x-axis. And on the left and right sides, the area is bounded by vertical
lines (though in some cases, you may not notice these lines because the func-
tion crosses the x-axis at this point).

You can generalize this problem to study any continuous function. To illus-
trate this, the shaded region in Figure 1-5 shows the area under the function
f(x) between the vertical lines x = a and x = b.

The area problem is all about finding the area under a continuous function
between two constant values of x that are called the limits of integration, usu-
ally denoted by a and b.

The limits of integration aren’t limits in the sense that you learned about in
Calculus I. They’re simply constants that tell you the width of the area that
you’re attempting to measure.

In a sense, this formula for the shaded area isn’t much different from those
that I provide earlier in this chapter. It’s just a formula, which means that if
you plug in the right numbers and calculate, you get the right answer.

The catch, however, is in the word calculate. How exactly do you calculate 
using this new symbol # ? As you may have figured out, the answer is on the 
cover of this book: calculus. To be more specific, integral calculus or integration.

∫  ƒ(x) dxArea =
a

b

x

y

x = a x = b

y = ƒ(x)

Figure 1-5:
A typical

area
problem.
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Most typical Calculus II courses taught at your friendly neighborhood college
or university focus on integration — the study of how to solve the area prob-
lem. When Calculus II gets confusing (and to be honest, you probably will get
confused somewhere along the way), try to relate what you’re doing back to
this central question: “How does what I’m working on help me find the area
under a function?”

Finding definite answers with 
the definite integral
You may be surprised to find out that you’ve known how to integrate some
functions for years without even knowing it. (Yes, you can know something
without knowing that you know it.)

For example, find the rectangular area under the function y = 2 between x = 1
and x = 4, as shown in Figure 1-6.

This is just a rectangle with a base of 3 and a height of 2, so its area is obvi-
ously 6. But this is also an area problem that can be stated in terms of inte-
gration as follows:

Area dx2 6
1

4

= =#

As you can see, the function I’m integrating here is f(x) = 2. The limits of inte-
gration are 1 and 4 (notice that the greater value goes on top). You already

Area =

x

y
y = 2

x = 1 x = 4

∫  2 dx
1

4

Figure 1-6:
The

rectangular
area under

the function
y = 2,

between 
x = 1 and 

x = 4.
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know that the area is 6, so you can solve this calculus problem without
resorting to any scary or hairy methods. But, you’re still integrating, so please
pat yourself on the back, because I can’t quite reach it from here.

The following expression is called a definite integral:

dx2
1

4

#

For now, don’t spend too much time worrying about the deeper meaning 
behind the # symbol or the dx (which you may remember from your fond 

memories of the differentiating that you did in Calculus I). Just think of #
and dx as notation placed around a function — notation that means area.

What’s so definite about a definite integral? Two things, really:

� You definitely know the limits of integration (in this case, 1 and 4).
Their presence distinguishes a definite integral from an indefinite inte-
gral, which you find out about in Chapter 3. Definite integrals always
include the limits of integration; indefinite integrals never include them.

� A definite integral definitely equals a number (assuming that its limits
of integration are also numbers). This number may be simple to find or
difficult enough to require a room full of math professors scribbling
away with #2 pencils. But, at the end of the day, a number is just a
number. And, because a definite integral is a measurement of area, you
should expect the answer to be a number.

When the limits of integration aren’t numbers, a definite integral doesn’t 
necessarily equal a number. For example, a definite integral whose limits of
integration are k and 2k would most likely equal an algebraic expression that
includes k. Similarly, a definite integral whose limits of integration are sin θ
and 2 sin θ would most likely equal a trig expression that includes θ. To
sum up, because a definite integral represents an area, it always equals a
number — though you may or may not be able to compute this number.

As another example, find the triangular area under the function y = x,
between x = 0 and x = 8, as shown in Figure 1-7.

This time, the shape of the shaded area is a triangle with a base of 8 and a
height of 8, so its area is 32 (because the area of a triangle is half the base
times the height). But again, this is an area problem that can be stated in
terms of integration as follows:

Area x dx 32
0

8

= =#
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The function I’m integrating here is f(x) = x and the limits of integration are 0
and 8. Again, you can evaluate this integral with methods from classical and
analytic geometry. And again, the definite integral evaluates to a number, which
is the area below the function and above the x-axis between x = 0 and x = 8.

As a final example, find the semicircular area between x = –4 and x = 4, as
shown in Figure 1-8.

First of all, remember from Pre-Calculus how to express the area of a circle
with a radius of 4 units:

x2 + y2 = 16

dx16 − x 2

x

y
y = 16 − x 2

x = −4 x = 4

∫  Area =
-4

4

Figure 1-8:
The semi-

circular
area

between 
x = –4 and 

x = 4.

x

y
y = x

x = 0 x = 8

∫  x dxArea =
0

8

Figure 1-7:
The

triangular
area under

the function
y = x,

between 
x = 0 and 

x = 8.
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Next, solve this equation for y:

y x16 2!= -

A little basic geometry tells you that the area of the whole circle is 16π, so the
area of the shaded semicircle is 8π. Even though a circle isn’t a function (and
remember that integration deals exclusively with continuous functions!), the
shaded area in this case is beneath the top portion of the circle. The equation
for this curve is the following function:

y x16 2= -

So, you can represent this shaded area as a definite integral:

Area x dx π16 82

4

4

= - =
-

#

Again, the definite integral evaluates to a number, which is the area under the
function between the limits of integration.

Slicing Things Up
One good way of approaching a difficult task — from planning a wedding to
climbing Mount Everest — is to break it down into smaller and more manage-
able pieces.

In this section, I show you the basics of how mathematician Bernhard Riemann
used this same type of approach to calculate the definite integral, which I intro-
duce in the previous section “Checking out the Area.” Throughout this section
I use the example of the area under the function y = x2, between x = 1 and x = 5.
You can find this example in Figure 1-9.

x

y
y = x 2

x = 1 x = 5

∫  x 2 dxArea =
1

5

Figure 1-9:
The area

under the
function 

y = x2,
between 
x = 1 and 

x = 5.
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Untangling a hairy problem 
by using rectangles
The earlier section “Checking out the Area” tells you how to write the definite
integral that represents the area of the shaded region in Figure 1-9:

x dx2

1

5

#

Unfortunately, this definite integral — unlike those earlier in this chapter —
doesn’t respond to the methods of classical and analytic geometry that I use
to solve the problems earlier in this chapter. (If it did, integrating would be
much easier and this book would be a lot thinner!)

Even though you can’t solve this definite integral directly (yet!), you can
approximate it by slicing the shaded region into two pieces, as shown in
Figure 1-10.

Obviously, the region that’s now shaded — it looks roughly like two steps
going up but leading nowhere — is less than the area that you’re trying to
find. Fortunately, these steps do lead someplace, because calculating the area
under them is fairly easy.

Each rectangle has a width of 2. The tops of the two rectangles cut across
where the function x2 meets x = 1 and x = 3, so their heights are 1 and 9,
respectively. So, the total area of the two rectangles is 20, because

2 (1) + 2 (9) = 2 (1 + 9) = 2 (10) = 20

x

y
y = x 2

x = 1 x = 5

Figure 1-10:
Area

approx-
imated
by two

rectangles.
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With this approximation of the area of the original shaded region, here’s the
conclusion you can draw:

x dx 202

1

5

.#

Granted, this is a ballpark approximation with a really big ballpark. But, even
a lousy approximation is better than none at all. To get a better approxima-
tion, try cutting the figure that you’re measuring into a few more slices, as
shown in Figure 1-11.

Again, this approximation is going to be less than the actual area that you’re
seeking. This time, each rectangle has a width of 1. And the tops of the four
rectangles cut across where the function x2 meets x = 1, x = 2, x = 3, and x = 4,
so their heights are 1, 4, 9, and 16, respectively. So the total area of the four
rectangles is 30, because

1 (1) + 1 (4) + 1 (9) + 1 (16) = 1 (1 + 4 + 9 + 16) = 1 (30) = 30

Therefore, here’s a second approximation of the shaded area that you’re
seeking:

x dx 302

1

5

.#

Your intuition probably tells you that your second approximation is better
than your first, because slicing the rectangles more thinly allows them to cut
in closer to the function. You can verify this intuition by realizing that both
20 and 30 are less than the actual area, so whatever this area turns out to be,
30 must be closer to it.

x

y
y = x 2

x = 1 x = 5

Figure 1-11:
A closer

approxima-
tion; the

area is
approxi-

mated
by four

rectangles.
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You might imagine that by slicing the area into more rectangles (say 10, or
100, or 1,000,000), you’d get progressively better estimates. And, again, your
intuition would be correct: As the number of slices increases, the result
approaches 41.3333....

In fact, you may very well decide to write:

.x dx 41 332

1

5

=#

This, in fact, is the correct answer. But to justify this conclusion, you need a
bit more rigor.

Building a formula for finding area
In the previous section, you calculate the areas of two rectangles and four
rectangles, respectively, as follows:

2 (1) + 2 (9) = 2 (1 + 9) = 20

1 (1) + 1 (4) + 1 (9) + 1 (16) = 1 (1 + 4 + 9 + 16) = 30

Each time, you divide the area that you’re trying to measure into rectangles
that all have the same width. Then, you multiply this width by the sum of the
heights of all the rectangles. The result is the area of the shaded area.

In general, then, the formula for calculating an area sliced into n rectangles is:

Area of rectangles = wh1 + wh2 + ... + whn

22 Part I: Introduction to Integration 

How high is up?
When you’re slicing a weird shape into rectan-
gles, finding the width of each rectangle is easy
because they’re all the same width. You just
divide the total width of the area that you’re
measuring into equal slices.

Finding the height of each individual rectangle,
however, requires a bit more work. Start by
drawing the horizontal tops of all the rectangles
you’ll be using. Then, for each rectangle:

1. Locate where the top of the rectangle
meets the function.

2. Find the value of x at that point by looking
down at the x-axis directly below this
point.

3. Get the height of the rectangle by plugging
that x-value into the function.
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In this formula, w is the width of each rectangle and h1, h2, ... , hn, and so forth
are the various heights of the rectangles. The width of all the rectangles is the
same, so you can simplify this formula as follows:

Area of rectangles = w (h1 + h2 + ... + hn)

Remember that as n increases — that is, the more rectangles you draw — the
total area of all the rectangles approaches the area of the shape that you’re
trying to measure.

I hope that you agree that there’s nothing terribly tricky about this formula.
It’s just basic geometry, measuring the area of rectangles by multiplying
their width and height. Yet, in the rest of this section, I transform this simple
formula into the following formula, called the Riemann sum formula for the
definite integral:

limf x dx f x n
b a*

a

b

n
i

i

n

1
=

-
"3 =

# !^ _ ch i m

No doubt about it, this formula is eye-glazing. That’s why I build it step by
step by starting with the simple area formula. This way, you understand com-
pletely how all this fancy notation is really just an extension of what you can
see for yourself.

If you’re sketchy on any of these symbols — such as Σ and the limit — read
on, because I explain them as I go along. (For a more thorough review of
these symbols, see Chapter 2.)

Approximating the definite integral
Earlier in this chapter I tell you that the definite integral means area. So in
transforming the simple formula

Area of rectangles = w (h1 + h2 + ... + hn)

the first step is simply to introduce the definite integral:

f x dx w h h h
a

b

n1 2 f. + + +# ^ _h i

As you can see, the = has been changed to ≈ — that is, the equation has been
demoted to an approximation. This change is appropriate — the definite inte-
gral is the precise area inside the specified bounds, which the area of the rec-
tangles merely approximates.

Limiting the margin of error
As n increases — that is, the more rectangles you draw — your approxima-
tion gets better and better. In other words, as n approaches infinity, the area

23Chapter 1: An Aerial View of the Area Problem
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of the rectangles that you’re measuring approaches the area that you’re
trying to find.

So, you may not be surprised to find that when you express this approximation
in terms of a limit, you remove the margin of error and restore the approxima-
tion to the status of an equation:

limf x dx w h h h
a

b

n
n1 2 f= + + +

"3
# ^ _h i

This limit simply states mathematically what I say in the previous section: As
n approaches infinity, the area of all the rectangles approaches the exact area
that the definite integral represents.

Widening your understanding of width
The next step is to replace the variable w, which stands for the width of each
rectangle, with an expression that’s more useful.

Remember that the limits of integration tell you the width of the area that
you’re trying to measure, with a as the smaller value and b as the greater. So
you can write the width of the entire area as b – a. And when you divide this
area into n rectangles, each rectangle has the following width:

w = n
b a-

Substituting this expression into the approximation results in the following:

limf x dx n
b a h h h

a

b

n
n1 2 f=

-
+ + +

"3
# ^ _h i

As you can see, all I’m doing here is expressing the variable w in terms of a, b,
and n.

Summing things up with sigma notation
You may remember that sigma notation — the Greek symbol Σ used in equa-
tions — allows you to streamline equations that have long strings of numbers
added together. Chapter 2 gives you a review of sigma notation, so check it
out if you need a review.

The expression h1 + h2 + ... + hn is a great candidate for sigma notation:

i

n

1=

! hi = h1 + h2 + ... + hn

So, in the equation that you’re working with, you can make a simple substitu-
tion as follows:

limf x dx n
b a h

a

b

n
i

i

n

1
=

-
"3 =

# !^ h
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Now, I tweak this equation by placing n
b a- inside the sigma expression (this 

is a valid rearrangement, as I explain in Chapter 2):

limf x dx h n
b a

a

b

n
i

i

n

1
=

-
"3 =

# !^ ch m

Heightening the functionality of height
Remember that the variable hi represents the height of a single rectangle
that you’re measuring. (The sigma notation takes care of adding up these
heights.) The last step is to replace hi with something more functional. And
functional is the operative word, because the function determines the height
of each rectangle.

Here’s the short explanation, which I clarify later: The height of each individ-
ual rectangle is determined by a value of the function at some value of x lying
someplace on that rectangle, so:

hi = f(xi*)

The notation xi*, which I explain further in “Moving left, right, or center,”
means something like “an appropriate value of xi.” That is, for each hi in your
sum (h1, h2, and so forth) you can replace the variable hi in the equation for
an appropriate value of the function. Here’s how this looks:

limf x dx f x n
b a*

a

b

n
i

i

n

1
=

-
"3 =

# !^ _ ch i m

This is the complete Riemann sum formula for the definite integral, so in a
sense I’m done. But I still owe you a complete explanation for this last substi-
tution, and here it comes.

Moving left, right, or center
Go back to the example that I start with, and take another look at the way I
slice the shaded area into four rectangles in Figure 1-12.

x

y
y = x 2

x = 1 x = 5

Figure 1-12:
Approxi-

mating area
with left

rectangles.
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As you can see, the heights of the four rectangles are determined by the
value of f(x) when x is equal to 1, 2, 3, and 4, respectively — that is, f(1), f(2),
f(3), and f(4). Notice that the upper-left corner of each rectangle touches the
function and determines the height of each rectangle.

However, suppose that I draw the rectangles as shown in Figure 1-13.

In this case, the upper-right corner touches the function, so the heights of the
four rectangles are f(2), f(3), f(4), and f(5).

Now, suppose that I draw the rectangles as shown in Figure 1-14.

This time, the midpoint of the top edge of each rectangle touches the function,
so the heights of the rectangles are f(1.5), f(2.5), f(3.5), and f(4.5).

x

y
y = x 2

x = 1 x = 5

Figure 1-14:
Approxi-

mating area
with

midpoint
rectangles.

x

y
y = x 2

x = 1 x = 5

Figure 1-13:
Approxi-

mating area
with right

rectangles.
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It seems that I can draw rectangles at least three different ways to approxi-
mate the area that I’m attempting to measure. They all lead to different
approximations, so which one leads to the correct answer? The answer is all
of them.

This surprising answer results from the fact that the equation for the definite
integral includes a limit. No matter how you draw the rectangles, as long as the
top of each rectangle coincides with the function at one point (at least), the
limit smoothes over any discrepancies as n approaches infinity. This slack in
the equation shows up as the * in the expression f(xi*).

For example, in the example that uses four rectangles, the first rectangle is
located from x = 1 to x = 2, so

1 ≤ x1* ≤ 2 therefore 1 ≤ f(x1*) ≤ 4

Table 1-2 shows you the range of allowable values for xi when approximating
this area with four rectangles. In each case, you can draw the height of the
rectangle on a range of different values of x.

Table 1-2 Allowable Values of xi* When n = 4
Value of i Location of Allowable Lowest Value Highest Value 

Rectangle Value of xi* of f(xi*) of f(xi*)

i = 1 x = 1 to x = 2 1 ≤ x1* ≤ 2 f(1) = 1 f(2) = 4

i = 2 x = 2 to x = 3 2 ≤ x2* ≤ 3 f(2) = 4 f(3) = 9

i = 3 x = 3 to x = 4 3 ≤ x3* ≤ 4 f(3) = 9 f(4) = 16

i = 4 x = 4 to x = 5 4 ≤ x1* ≤ 5 f(4) = 16 f(5) = 25

In Chapter 3, I discuss this idea — plus a lot more about the fine points of the
formula for the definite integral — in greater detail.

Defining the Indefinite
The Riemann sum formula for the definite integral, which I discuss in the pre-
vious section, allows you to calculate areas that you can’t calculate by using
classical or analytic geometry. The downside of this formula is that it’s quite
a hairy beast. In Chapter 3, I show you how to use it to calculate area, but
most students throw their hands up at this point and say, “There has to be
a better way!”

27Chapter 1: An Aerial View of the Area Problem

05_225226-ch01.qxd  5/1/08  12:07 AM  Page 27



The better way is called the indefinite integral. The indefinite integral looks a
lot like the definite integral. Compare for yourself:

Definite Integrals Indefinite Integrals

x dx2

1

5

# x dx2#

sinx dx
π

0

# sinx dx#

dxe x

1

1

-

# dxe x#

Like the definite integral, the indefinite integral is a tool for measuring the
area under a function. Unlike it, however, the indefinite integral has no limits
of integration, so evaluating it doesn’t give you a number. Instead, when you
evaluate an indefinite integral, the result is a function that you can use to
obtain all related definite integrals. Chapter 3 gives you the details of how
definite and indefinite integrals are related.

Indefinite integrals provide a convenient way to calculate definite integrals. In
fact, the indefinite integral is the inverse of the derivative, which you know
from Calculus I. (Don’t worry if you don’t remember all about the derivative —
Chapter 2 gives you a thorough review.) By inverse, I mean that the indefinite
integral of a function is really the anti-derivative of that function. This connec-
tion between integration and differentiation is more than just an odd little fact:
It’s known as the Fundamental Theorem of Calculus (FTC).

For example, you know that the derivative of x2 is 2x. So, you expect that the
anti-derivative — that is, the indefinite integral — of 2x is x2. This is funda-
mentally correct with one small tweak, as I explain in Chapter 3.

Seeing integration as anti-differentiation allows you to solve tons of integrals
without resorting to the Riemann sum formula (I tell you about this in
Chapter 4). But integration can still be sticky depending on the function that
you’re trying to integrate. Mathematicians have developed a wide variety of
techniques for evaluating integrals. Some of these methods are variable sub-
stitution (see Chapter 5), integration by parts (see Chapter 6), trig substitu-
tion (see Chapter 7), and integration by partial fractions (see Chapter 8).

Solving Problems with Integration
After you understand how to describe an area problem by using the definite
integral (Part I), and how to calculate integrals (Part II), you’re ready to get
into action solving a wide range of problems.
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Some of these problems know their place and stay in two dimensions. Others
rise up and create a revolution in three dimensions. In this section, I give you
a taste of these types of problems, with an invitation to check out Part III of
this book for a deeper look.

Three types of problems that you’re almost sure to find on an exam involve
finding the area between curves, the length of a curve, and volume of revolu-
tion. I focus on these types of problems and many others in Chapters 9 and 10.

We can work it out: Finding 
the area between curves
When you know how the definite integral represents the area under a curve,
finding the area between curves isn’t too difficult. Just figure out how to break
the problem into several smaller versions of the basic area problem. For exam-
ple, suppose that you want to find the area between the function y = sin x and 
y = cos x, from x = 0 to x = π

4 — that is, the shaded area A in Figure 1-15.

In this case, integrating y = cos x allows you to find the total area A + B. And
integrating y = sin x gives you the area of B. So, you can subtract A + B – B to
find the area of A.

For more on how to find an area between curves, flip to Chapter 9.

Walking the long and winding road
Measuring a segment of a straight line or a section of a circle is simple when
you’re using classical and analytic geometry. But how do you measure a
length along an unusual curve produced by a polynomial, exponential, or trig
equation?

y

x = 0

y = sin x

y = cos x

A
B

x  = π
4

xFigure 1-15:
The area

between the
function 

y = sin x and
y = cos x,

from x = 0 to
x = π

4 .
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For example, what’s the distance from point A to point B along the curve
shown in Figure 1-16?

Once again, integration is your friend. In Chapter 9, I show you how to use
integration provides a formula that allows you to measure arc length.

You say you want a revolution
Calculus also allows you to find the volume of unusual shapes. In most cases,
calculating volume involves a dimensional leap into multivariable calculus,
the topic of Calculus III, which I touch upon in Chapter 14. But in a few situa-
tions, setting up an integral just right allows you to calculate volume by inte-
grating over a single variable — that is, by using the methods you discover in
Calculus II.

Among the trickiest of these problems involves the solid of revolution of a
curve. In such problems, you’re presented with a region under a curve. Then,
you imagine the solid that results when you spin this region around the axis,
and then you calculate the volume of this solid as seen in Figure 1-17.

y = x 2

x

y

Figure 1-17:
A solid of

revolution
produced by
spinning the

function 
y = x2 around

the axis 
x = 0.

y

x = 1 x = 3

A

y = In x
B

x

Figure 1-16:
The

distance
from point A

to point B
along the
function 
y = ln x.
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Clearly, you need calculus to find the area of this region. Then you need more
calculus and a clear plan of attack to find the volume. I give you all this and
more in Chapter 10.

Understanding Infinite Series
The last third of a typical Calculus II course — roughly five weeks — usually
focuses on the topic of infinite series. I cover this topic in detail in Part IV.
Here’s an overview of some of the ideas you find out about there.

Distinguishing sequences and series
A sequence is a string of numbers in a determined order. For example:

2, 4, 6, 8, 10, ...

1, 2
1 , 4

1 , 8
1 , 16

1 , ...

1, 2
1 , 3

1 , 4
1 , 5

1 , ...

Sequences can be finite or infinite, but calculus deals well with the infinite, so
it should come as no surprise that calculus concerns itself only with infinite
sequences.

You can turn an infinite sequence into an infinite series by changing the
commas into plus signs:

2 + 4 + 6 + 8 + 10 + ...

1 + 2
1 + 4

1 + 8
1 + 16

1 + ...

1 + 2
1 + 3

1 + 4
1 + 5

1 + ...

Sigma notation, which I discuss further in Chapter 2, is useful for expressing
infinite series more succinctly:

n2
n 1

3

=

!

2
1

n

n 1

3

=

! c m

n
1

n 1

3

=

!
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Evaluating series
Evaluating an infinite series is often possible. That is, you can find out what
all those numbers add up to. For example, here’s a solution that should come
as no surprise:

n2
n 1

3

=

! = 2 + 4 + 6 + 8 + 10 + ... = ∞

A helpful way to get a handle on some series is to create a related sequence of
partial sums — that is, a sequence that includes the first term, the sum of the
first two terms, the sum of the first three terms, and so forth. For example,
here’s a sequence of partial sums for the second series shown earlier:

1 = 1

1 + 2
1 = 12

1

1 + 2
1 + 4

1 = 1 4
3

1 + 2
1 + 4

1 + 8
1 = 1 8

7

1 + 2
1 + 4

1 + 8
1 + 16

1 = 116
15

The resulting sequence of partial sums provides strong evidence of this 
conclusion:

2
1

n

n 1

3

=

! c m = 1 2
1

4
1

8
1

16
1

+ + + + + ... 1

Identifying convergent and
divergent series
When a series evaluates to a number — as does 2

1
n

n 1

3

=

! c m — it’s called a convergent 

series. However, when a series evaluates to infinity — like n2
n 1

3

=

! — it’s called a
divergent series.

Identifying whether a series is convergent or divergent isn’t always simple. For
example, take another look at the third series I introduce earlier in this section:

n
1

n 1

3

=

! = 1 2
1

3
1

4
1

5
1

+ + + + + ... = ?

This is called the harmonic series, but can you guess by looking at it whether
it converges or diverges? (Before you begin adding fractions, let me warn you
that the partial sum of the first 10,000 numbers is less than 10.)
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An ongoing problem as you study infinite series is deciding whether a given
series is convergent or divergent. Chapter 13 gives you a slew of tests to help
you find out.

Advancing Forward into Advanced Math
Although it’s further along in math than many people dream of going, calcu-
lus isn’t the end but a beginning. Whether you’re enrolled in a Calculus II
class or reading on your own, here’s a brief overview of some areas of math
that lie beyond integration.

Multivariable calculus
Multivariable calculus generalizes differentiation and integration to three dimen-
sions and beyond. Differentiation in more than two dimensions requires partial
derivatives. Integration in more than two dimensions utilizes multiple integrals.

In practice, multivariable calculus as taught in most Calculus III classes is
restricted to three dimensions, using three sets of axes and the three vari-
ables x, y, and z. I discuss multivariable calculus in more detail in Chapter 14.

Partial derivatives
As you know from Calculus I, a derivative is the slope of a curve at a given
point on the graph. When you extend the idea of slope to three dimensions,
a new set of issues that need to be resolved arises.

For example, suppose that you’re standing on the side of a hill that slopes
upward. If you draw a line up and down the hill through the point you’re
standing on, the slope of this line will be steep. But if you draw a line across
the hill through the same point, the line will have little or no slope at all.
(For this reason, mountain roads tend to cut sideways, winding their way up
slowly, rather than going straight up and down.)

So, when you measure slope on a curved surface in three dimensions, you
need to take into account not only the point where you’re measuring the
slope but the direction in which you’re measuring it. Partial derivatives allow
you to incorporate this additional information.

Multiple integrals
Earlier in this chapter, you discover that integration allows you to measure
the area under a curve. In three dimensions, the analog becomes finding the
volume under a curved surface. Multiple integrals (integrals nested inside
other integrals) allow you to compute such volume.
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Differential equations
After multivariable calculus, the next topic most students learn on their pre-
cipitous math journey is differential equations.

Differential equations arise in many branches of science, including physics,
where key concepts such as velocity and acceleration of an object are 
computed as first and second derivatives. The resulting equations contain
hairy combinations of derivatives that are confusing and tricky to solve.
For example:

F m
dt
d s

2

2

=

Beyond ordinary differential equations, which include only ordinary deriva-
tives, partial differential equations — such as the heat equation or the Laplace
equation — include partial derivatives. For example:

V
x
V

y
V

z
V 02

2

2

2

2

2

2

d
2
2

2
2

2
2

= + + =

I provide a look at ordinary and partial differential equations in Chapter 15.

Fourier analysis
So much of physics expresses itself in differential equations that finding reliable
methods of solving these equations became a pressing need for 19th-century
scientists. Mathematician Joseph Fourier met with the greatest success.

Fourier developed a method for expressing every function as the function of an
infinite series of sines and cosines. Because trig functions are continuous and
infinitely differentiable, Fourier analysis provided a unified approach to solving
huge families of differential equations that were previously incalculable.

Numerical analysis
A lot of math is theoretical and ideal: the search for exact answers without
regard to practical considerations such as “How long will this problem take
to solve?” (If you’ve ever run out of time on a math exam, you probably know
what I’m talking about!)
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In contrast, numerical analysis is the search for a close-enough answer in a
reasonable amount of time.

For example, here’s an integral that can’t be evaluated:

dxe x 2

#

But even though you can’t solve this integral, you can approximate its solu-
tion to any degree of accuracy that you desire. And for real-world applica-
tions, a good approximation is often acceptable as long as you (or, more
likely, a computer) can calculate it in a reasonable amount of time. Such a
procedure for approximating the solution to a problem is called an algorithm.

Numerical analysis examines algorithms for qualities such as precision (the
margin of error for an approximation) and tractability (how long the calcula-
tion takes for a particular level of precision).
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Chapter 2

Dispelling Ghosts from the Past:
A Review of Pre-Calculus and

Calculus I
In This Chapter
� Making sense of exponents of 0, negative numbers, and fractions

� Graphing common continuous functions and their transformations

� Remembering trig identities and sigma notation

� Understanding and evaluating limits

� Differentiating by using all your favorite rules

� Evaluating indeterminate forms of limits with L’Hospital’s Rule

Remember Charles Dickens’s A Christmas Carol? You know, Scrooge and
those ghosts from the past. Math can be just like that: All the stuff you

thought was dead and buried for years suddenly pays a spooky visit when
you least expect it.

This quick review is here to save you from any unnecessary sleepless nights.
Before you proceed any further on your calculus quest, make sure that you’re
on good terms with the information in this chapter.

First I cover all the Pre-Calculus you forgot to remember: polynomials, expo-
nents, graphing functions and their transformations, trig identities, and sigma
notation. Then I give you a brief review of Calculus I, focusing on limits and
derivatives. I close the chapter with a topic that you may or may not know
from Calculus I: L’Hospital’s Rule for evaluating indeterminate forms of limits.

If you still feel stumped after you finish this chapter, I recommend that you
pick up a copy of Pre-Calculus For Dummies by Deborah Rumsey, PhD, or
Calculus For Dummies by Mark Ryan (both published by Wiley), for a more 
in-depth review.
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Forgotten but Not Gone: A Review 
of Pre-Calculus

Here’s a true story: When I returned to college to study math, my first degree
having been in English, it had been a lot of years since I’d taken a math
course. I won’t mention how many years, but when I confided this number to
my first Calculus teacher, she swooned and was revived with smelling salts
(okay, I’m exaggerating a little), and then she asked with a concerned look on
her face, “Are you sure you’re up for this?”

I wasn’t sure at all, but I hung in there. Along the way, I kept refining a stack of
notes labeled “Brute Memorization” — basically, what you find in this section.
Here’s what I learned that semester: Whether it’s been one year or 20 since
you took Pre-Calculus, make sure that you’re comfy with this information.

Knowing the facts on factorials
The factorial of a positive integer, represented by the symbol !, is that number
multiplied by every positive integer less than itself. For example:

5! = 5 · 4 · 3 · 2 · 1 = 120

Notice that the factorial of every positive number equals that number multi-
plied by the next-lowest factorial. For example:

6! = 6 (5!)

Generally speaking, then, the following equality is true:

(x + 1)! = (x + 1) x!

This equality provides the rationale for the odd-looking convention that 0! = 1:

(0 + 1)! = (0 + 1) 0!

1! = (1) 0!

1 = 0!

When factorials show up in fractions (as they do in Chapters 12 and 13), you
can usually do a lot of cancellation that makes them simpler to work with. For
example:

!
!

5
3

5 4 3 2 1
3 2 1

5 4
1

20
1

= = =
$ $ $ $
$ $

$^

^

^h

h

h
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Even when a fraction includes factorials with variables, you can usually sim-
plify it. For example:

!
!

!
!

x
x

x
x x

x
1 1

1
+

=
+

= +
^ ^h h

Polishing off polynomials
A polynomial is any function of the following form:

f(x) = anx
n + an–1x

n–1 + an–2x
n–2 + ... + a1x + a0

Note that every term in a polynomial is x raised to the power of a nonnega-
tive integer, multiplied by a real-number coefficient. Here are a few examples
of polynomials:

f(x) = x3 – 4x2 + 2x – 5

f(x) = x12 – 4
3 x7 + 100x – π

f(x) = (x2 + 8)(x – 6)3

Note that in the last example, multiplying the right side of the equation will
change the polynomial to a more recognizable form.

Polynomials enjoy a special status in math because they’re particularly easy
to work with. For example, you can find the value of f(x) for any x value by
plugging this value into the polynomial. Furthermore, polynomials are also
easy to differentiate and integrate. Knowing how to recognize polynomials
when you see them will make your life in any math course a whole lot easier.

Powering through powers (exponents)
Remember when you found out that any number (except 0) raised to the
power of 0 equals 1? That is:

n0 = 1 (for all n ≠ 0)

It just seemed weird, didn’t it? But when you asked your teacher why, I sus-
pect you got an answer that sounded something like “That’s just how mathe-
maticians define it.” Not a very satisfying answer, is it?

However if you’re absolutely dying to know why (or if you’re even mildly curi-
ous about it), the answer lies in number patterns.
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For starters, suppose that n = 2. Table 2-1 is a simple chart that encapsulates
information you already know.

Table 2-1 Positive Integer Exponents of 2
x 1 2 3 4 5 6 7 8

2x 2 4 8 16 32 64 128 256

As you can see, as x increases by 1, 2x doubles. So, as x decreases by 1, 2x is
halved. You don’t need rocket science to figure out what happens when x = 0.
Table 2-2 shows you what happens.

Table 2-2 Nonnegative Integer Exponents of 2
x 0 1 2 3 4 5 6 7 8

2x 1 2 4 8 16 32 64 128 256

This chart provides a simple rationale of why 20 = 1. The same reasoning
works for all other real values of n (except 0). Furthermore, Table 2-3 shows
you what happens when you continue the pattern into negative values of x.

Table 2-3 Positive and Negative Integer Exponents of 2 
x –4 –3 –2 –1 0 1 2 3 4

nx

16
1

8
1

4
1

2
1 1 2 4 8 16

As the table shows, 2–x = 2
1

x . This pattern also holds for all real, nonzero
values of n, so

n–x = n
1

x

Notice from this table that the following rule holds:

nanb = na + b

For example:

23 ⋅ 24 = 23 + 4 = 27 = 128

40 Part I: Introduction to Integration 

06_225226-ch02.qxd  5/1/08  12:18 AM  Page 40



This rule allows you to evaluate fractional exponents as roots. For example:

2 2 2 2 2 2 2so2
1

2
1

2
1

2
1 1

2
1

= = = =
+$ ` j

You can generalize this rule for all bases and fractional exponents as follows:

n nb
a ab=

Plotting these values for x and f(x) = 2x onto a graph provides an even deeper
understanding (check out Figure 2-1):

In fact, assuming the continuity of the exponential curve even provides a
rationale (or, I suppose, an irrationale) for calculating a number raised to an
irrational exponent. This calculation is beyond the scope of this book, but it’s
a problem in numerical analysis, a topic that I discuss briefly in Chapter 1.

Noting trig notation
Trigonometry is a big and important subject in Calculus II. I can’t cover every-
thing you need to know about trig here. For more detailed information on trig,
see Trigonometry For Dummies by Mary Jane Sterling (Wiley). But I do want to
spend a moment on one aspect of trig notation to clear up any confusion you
may have.

When you see the notation

2 cos x

remember that this means 2 (cos x). So, to evaluate this function for x = π,
evaluate the inner function cos x first, and then multiply the result by 2:

2 cos π = 2 · –1 = –2

y

y = 2 x

1

1 2–2 –1
x

½

2

3

4

Figure 2-1:
Graph of the

function 
y = 2x.
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On the other hand, the notation

cos 2x

means cos (2x). For example, to evaluate this function for x = 0, evaluate the
inner function 2x first, and then take the cosine of the result:

cos (2 · 0) = cos 0 = 1

Finally (and make sure that you understand this one!), the notation

cos2 x

means (cos x)2. In other words, to evaluate this function for x = π, evaluate the
inner function cos x first, and then take the square of the result:

cos2 π = (cos π)2 = (–1)2 = 1

Getting clear on how to evaluate trig functions really pays off when you’re
applying the Chain Rule (which I discuss later in this chapter) and when inte-
grating trig functions (which I focus on in Chapter 7).

Figuring the angles with radians
When you first discovered trigonometry, you probably used degrees because
they were familiar from geometry. Along the way, you were introduced to
radians, and forced to do a bunch of conversions between degrees and radi-
ans, and then in the next chapter you went back to using degrees.

Degrees are great for certain trig applications, such as land surveying. But for
math, radians are the right tool for the job. In contrast, degrees are awkward
to work with.

For example, consider the expression sin 1,260°. You probably can’t tell just
from looking at this expression that it evaluates to 0, because 1,260° is a mul-
tiple of 180°.

In contrast, you can tell immediately that the equivalent expression sin7π is a
multiple of π. And as an added bonus, when you work with radians, the num-
bers tend to be smaller and you don’t have to add the degree symbol (°).

You don’t need to worry about calculating conversions between degrees and
radians. Just make sure that you know the most common angles in both
degrees and radians. Figure 2-2 shows you some common angles.
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Radians are the basis of polar coordinates, which I discuss later in this section.

Graphing common functions
You should be familiar with how certain common functions look when drawn
on a graph. In this section, I show you the most common graphs of functions.
These functions are all continuous, so they’re integrative at all real values of x.

Linear and polynomial functions
Figure 2-3 shows three simple functions.

y

x

y = n
y

x

y = x y = x
y

x

Figure 2-3:
Graphs of
two linear
functions
y = n and 
y = x and

the absolute
value

function 
y = |x|.

y

x

y

x

y

x

y

x

y

x

y

x

30° = π
6

45° = π
4 60° = π

3

90° = π
2 180° = π 270° = 3π

2
Figure 2-2:

Some
common
angles in

degrees and
radians.
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Figure 2-4 includes a few basic polynomial functions.

Exponential and logarithmic functions
Here are some exponential functions with whole number bases:

y = 2x

y = 3x

y = 10x

Notice that for every positive base, the exponential function

� Crosses the y-axis at x = 1

� Explodes to infinity as x increases (that is, it has an unbounded y value)

� Approaches y = 0 as x decreases (that is, in the negative direction the 
x-axis is an asymptote)

The most important exponential function is ex. See Figure 2-5 for a graph of
this function.

y

x

y = e x

1

Figure 2-5:
Graph of the
exponential

function 
y = ex.

y

x

y = x 2 y = x 3 y = x 4

y

x

y

x

Figure 2-4:
Graphs of

three
polynomial

functions
y = x2, y = x3,

and y = x4.
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The unique feature of this exponential function is that at every value of x, its
slope is ex. That is, this function is its own derivative (see “Recent Memories:
A Review of Calculus I” later in this chapter for more on derivatives).

Another important function is the logarithmic function (also called the natural
log function). Figure 2-6 is a graph of the logarithmic function y = ln x.

Notice that this function is the reflection of ex along the diagonal line y = x. So
the log function does the following:

� Crosses the x-axis at x = 1

� Explodes to infinity as x increases (that is, it has an unbounded y value),
though more slowly than any exponential function

� Produces a y value that approaches –∞ as x approaches 0 from the right

Furthermore, the domain of the log functions includes only positive values.
That is, inputting a nonpositive value to the log function is a big no-no, on par
with placing 0 in the denominator of a fraction or a negative value inside a
square root.

For this reason, functions placed inside the log function often get “pretreated”
with the absolute value operator. For example:

y = ln |x3|

You can bring an exponent outside of a natural log and make it a coefficient,
as follows:

ln (ab) = b ln a

y

x
1

y = In x

Figure 2-6:
Graph of the
logarithmic

function 
y = ln x.
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Trigonometric functions
The two most important graphs of trig functions are the sine and cosine. See
Figure 2-7 for graphs of these functions.

Note that the x values of these two graphs are typically marked off in multi-
ples of π. Each of these functions has a period of 2π. In other words, it repeats
its values after 2π units. And each has a maximum value of 1 and a minimum
value of –1.

Remember that the sine function

� Crosses the origin

� Rises to a value of 1 at x = π
2

� Crosses the x-axis at all multiples of π

Remember that the cosine function

� Has a value of 1 at x = 0

� Drops to a value of 0 at x = π
2

� Crosses the x-axis at π
2

3 , π
2

5 , π
2

7 , and so on

The graphs of other trig functions are also worth knowing. Figure 2-8 shows
graphs of the trig functions y = tan x, y = cot x, y = sec x, and y = csc x.

y

x

y = sin x

2ππ−π

1

–1

y

x

y = cos x

1

–1

−π
2

π
2

3π
2

−3π
2

Figure 2-7:
Graphs of

the trig
functions 

y = sin x and
y = cos x.
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Asymptotes
An asymptote is any straight line on a graph that a curve approaches but
doesn’t touch. It’s usually represented on a graph as a dashed line. For exam-
ple, all four graphs in Figure 2-8 have vertical asymptotes.

Depending on the curve, an asymptote can run in any direction, including
diagonally. When you’re working with functions, however, horizontal and ver-
tical asymptotes are more common.

Transforming continuous functions
When you know how to graph the most common functions, you can trans-
form them by using a few simple tricks, as I show you in Table 2-4.

y

x

y = tan x

π–π

y

1

–1

x

y

x

y = cot x

y = sec x y = csc x

–π
2

π
2

3π
2

y

1

–1

x

Figure 2-8:
Graphs of

the trig
functions 
y = tan x, 
y = cot x, 
y = sec x,

and 
y = csc x.
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Table 2-4 Five Vertical and Five Horizontal 
Transformations of Functions

Axis Direction Transformation Example

y-axis Shift Up y = f (x) + n y = ex + 1
(vertical)

Shift Down y = f (x) – n y = x3 – 2

Expand y = nf (x) y = 5 sec x

Contract y = n
f x^ h

y = sin x
10

Reflect y = –f (x) y = –(ln x)

x-axis Shift Right y = f (x – n) y = ex – 2

(horizontal)

Shift Left y = f (x + n) y = (x + 4)3

Expand y = f n
x

c m y = sec x
3

Contract y = f (nx) y = sin (πx)

Reflect y = f (–x) y = e–x

The vertical transformations are intuitive — that is, they take the function
in the direction that you’d probably expect. For example, adding a constant
shifts the function up and subtracting a constant shifts it down.

In contrast, the horizontal transformations are counterintuitive — that is,
they take the function in the direction that you probably wouldn’t expect. For
example, adding a constant shifts the function left and subtracting a constant
shifts it right.

Identifying some important trig identities
Memorizing trig identities is like packing for a camping trip.

When you’re backpacking into the wilderness, there’s a limit to what you can
comfortably carry, so you should probably leave your pogo stick and your
30-pound dumbbells at home. At the same time, you don’t want to find your-
self miles from civilization without food, a tent, and a first-aid kit.

I know that committing trig identities to memory registers on the Fun Meter
someplace between alphabetizing your spice rack and vacuuming the lint
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filter on your dryer. But knowing a few important trig identities can be a life-
saver when you’re lost out on the misty calculus trails, so I recommend that
you take a few along with you. (It’s nice when the metaphor really holds up,
isn’t it?)

For starters, here are the three inverse identities, which you probably know
already:

sin x = cscx
1

cos x = secx
1

tan x = cotx
1

You also need these two important identities:

tan x = cos
sin

x
x

cot x = sin
cos

x
x

I call these the Basic Five trig identities. By using them, you can express any
trig expression in terms of sines and cosines. Less obviously, you can also
express any trig expression in terms of tangents and secants (try it!). Both of
these facts are useful in Chapter 7, when I discuss trig integration.

Equally indispensable are the three square identities. Most students remem-
ber the first and forget about the other two, but you need to know them all:

sin2 x + cos2 x = 1

1 + tan2 x = sec2 x

1 + cot2 x = csc2 x
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How to avoid an identity crisis
Most students remember the first square iden-
tity without trouble:

sin2 x + cos2 x = 1

If you’re worried that you might forget the other
two square identities just when you need them
most, don’t despair. An easy way to remember
them is to divide every term in the first square
identity by sin2 x and cos2 x :

cos
sin

cos
cos

cosx
x

x
x

x
1

2

2

2

2

2+ =

sin
sin

sin
cos

sinx
x

x
x

x
1

2

2

2

2

2+ =

Now, simplify these equations using the Basic
Five trig identities:

1 + tan2 x = sec2 x

1 + cot2 x = csc2 x
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You also don’t want to be seen in public without the two half-angle identities:

sin2 x = cos x
2

1 2-

cos2 x = cos x
2

1 2+

Finally, you can’t live without the double-angle identities for sines:

sin 2x = 2 sin x cos x

Beyond these, if you have a little spare time, you can include these double-
angle identities for cosines and tangents:

cos 2x = cos2 x – sin2 x = 2 cos2 x – 1 = 1 – 2 sin2 x

tan 2x = 
tan

tan
x

x
1

2
2-

Polar coordinates
Polar coordinates are an alternative to the Cartesian coordinate system. As
with Cartesian coordinates, polar coordinates assign an ordered pair of
values to every point on the plane. Unlike Cartesian coordinates, however,
these values aren’t (x, y), but rather (r, θ).

� The value r is the distance to the origin.

� The value θ is the angular distance from the polar axis, which corre-
sponds to the positive x-axis in Cartesian coordinates. (Angular distance
is always measured counterclockwise.)

Figure 2-9 shows how to plot points in polar coordinates. For example:

� To plot the point (3, π
4 ), travel 3 units from the origin on the polar axis, 

and then arc π
4 (equivalent to 45°) counterclockwise.

� To plot (4, π
6

5 ), travel 4 units from the origin on the polar axis, and then 

arc π
6

5 units (equivalent to 150°) counterclockwise.

� To plot the point (2, π
2

3 ), travel 2 units from the origin on the polar axis, 
and then arc π

2
3 units (equivalent to 270°) counterclockwise.

Polar coordinates allow you to plot certain shapes on the graph more simply
than Cartesian coordinates. For example, here’s the equation for a 3-unit
circle centered at the origin in both Cartesian and polar coordinates:

y x 92!= - r = 3
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Some problems that would be difficult to solve expressed in terms of Cartesian
variables (x and y) become much simpler when expressed in terms of polar
variables (r and θ). To convert Cartesian variables to polar, use the following
formulas:

x = r cos θ y = r sin θ

To convert polar variables to Cartesian, use this formula:

r x y2 2!= + arctan x
yθ = d n

Polar coordinates are the basis of two alternative 3-D coordinate systems:
cylindrical coordinates and spherical coordinates. See Chapter 14 for a look
at these two systems.

Summing up sigma notation
Mathematicians just love sigma notation (Σ) for two reasons. First, it provides
a convenient way to express a long or even infinite series. But even more
important, it looks really cool and scary, which frightens nonmathematicians
into revering mathematicians and paying them more money.

However, when you get right down to it, Σ is just fancy notation for adding,
and even your little brother isn’t afraid of adding, so why should you be?

r

( 3, )π
4

r

( 4, )5π
6

r
( 2, )3π

2

Figure 2-9:
Plotting

points in
polar

coordinates.
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For example, suppose that you want to add the even numbers from 2 to 10. Of
course, you can write this expression and its solution this way:

2 + 4 + 6 + 8 + 10 = 30

Or you can write the same expression by using sigma notation:

n2
n 1

5

=

!

Here, n is the variable of summation — that is, the variable that you plug
values into and then add them up. Below the Σ, you’re given the starting
value of n (1) and above it the ending value (5). So here’s how to expand the
notation:

n2 2 1 2 2 2 3 2 4 2 5 30
n 1

5

= + + + + =
=

! ^ ^ ^ ^ ^h h h h h

You can also use sigma notation to stand for the sum of an infinite number of
values — that is, an infinite series. For example, here’s how to add up all the
positive square numbers:

n
n

2

1

3

=

!

This compact expression can be expanded as follows:

= 12 + 22 + 32 + 42 + ... = 1 + 4 + 9 + 16 + ...

This sum is, of course, infinite. But not all infinite series behave in this way. In
some cases, an infinite series equals a number. For example:

2
1

n

n 0

3

=

! c m

This series expands and evaluates as follows:

1 + 2
1 + 4

1 + 8
1 + ... = 2

When a series evaluates to a number, the series is convergent. When a series
isn’t convergent, it’s divergent. You find out all about divergent and conver-
gent series in Chapter 12.
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Recent Memories: A Review of Calculus I
Integration is the study of how to solve a single problem — the area problem.
Similarly, differentiation, which is the focus of Calculus I, is the study of how
to solve the tangent problem: how to find the slope of the tangent line at any
point on a curve. In this section, I review the highlights of Calculus I. For a
more thorough review, please see Calculus For Dummies by Mark Ryan (Wiley).

Knowing your limits
An important thread that runs through Calculus I is the concept of a limit.
Limits are also important in Calculus II. In this section, I give you a review of
everything you need to remember but may have forgotten about limits.

Telling functions and limits apart
A function provides a link between two variables: the independent variable
(usually x) and the dependent variable (usually y). A function tells you the
value y when x takes on a specific value. For example, here’s a function:

y = x2

In this case, when x takes a value of 2, the value of y is 4.

In contrast, a limit tells you what happens to y as x approaches a certain
number without actually reaching it. For example, suppose that you’re work-
ing with the function y = x2 and want to know the limit of this function as x
approaches 2. The notation to express this idea is as follows:

lim x
x 2

2

"

You can get a sense of what this limit equals by plugging successively closer
approximations of 2 into the function (see Table 2-5).

Table 2-5 Approximating lim x
x 2

2

"

x 1.7 1.8 1.9 1.99 1.999 1.9999

y 2.69 3.24 3.61 3.9601 3.996001 3.99960001
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This table provides strong evidence that the limit evaluates to 4. That is:

lim x 4
x 2

2=
"

Remember that this limit tells you nothing about what the function actually
equals when x = 2. It tells you only that as x approaches 2, the value of the
function gets closer and closer to 2. In this case, because the function and the
limit are equal, the function is continuous at this point.

Evaluating limits
Evaluating a limit means either finding the value of the limit or showing that
the limit doesn’t exist.

You can evaluate many limits by replacing the limit variable with the number
that it approaches. For example:

lim x
x
2 2 4

4
8

16 1
x 4

2 2

= = =
" $

Sometimes this replacement shows you that a limit doesn’t exist. For example:

lim x
x

3=
"3

When you find that a limit appears to equal either ∞ or –∞, the limit does not
exist (DNE). DNE is a perfectly good way to complete the evaluation of a limit.

Some replacements lead to apparently untenable situations, such as division
by zero. For example:

lim x 0 0
1e e

x

x

0

0

= =
"

This looks like a dead end, because division by zero is undefined. But, in fact,
you can actually get an answer to this problem. Remember that this limit tells
you nothing about what happens when x actually equals 0, only what hap-
pens as x approaches 0: The denominator shrinks toward 0, while the numer-
ator never falls below 1, so the value fraction becomes indefinitely large.
Therefore:

lim x
e Does Not Exist DNE

x

x

0"

^ h

Here’s another example:

, , , ,lim x
1 000 000 1 000 000

x 3=
"3
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This is another apparent dead end, because ∞ isn’t really a number, so how
can it be the denominator of a fraction? Again, the limit saves the day. It 
doesn’t tell you what happens when x actually equals ∞ (if such a thing were
possible), only what happens as x approaches ∞. In this case, the denomina-
tor becomes indefinitely large while the numerator remains constant, so:

, ,lim x
1 000 000 0

x
=

"3

Some limits are more difficult to evaluate because they’re one of several inde-
terminate forms. The best way to solve them is to use L’Hospital’s Rule, which
I discuss in detail at the end of this chapter.

Hitting the slopes with derivatives
The derivative at a given point on a function is the slope of the tangent line
to that function at that point. The derivative of a function provides a “slope
map” of that function.

The best way to compare a function with its derivative is by lining them up
vertically (see Figure 2-10 for an example).

y

x

y = x 2

–1

y

x

y ' = 2x

–1

–2

Figure 2-10:
Comparing
a graph of

the function
y = x2 with

its
derivative

function 
y' = 2x.

55Chapter 2: A Review of Pre-Calculus and Calculus I

06_225226-ch02.qxd  5/1/08  12:29 AM  Page 55



Looking at the top graph, you can see that when x = 0, the slope of the func-
tion y = x2 is 0 — that is, no slope. The bottom graph verifies this because at
x = 0, the derivative function y = 2x is also 0.

You probably can’t tell, however, what the slope of the top graph is at x = –1.
To find out, look at the bottom graph and notice that at x = –1, the derivative
function equals –2, so –2 is also the slope of the top graph at this point.
Similarly, the derivative function tells you the slope at every point on the
original function.

Referring to the limit formula 
for derivatives
In Calculus I, you develop two formulas for the derivative of a function. These
formulas are both based on limits, and they’re both equally valid:

limf x h
f x h f x

h 0
=

+ -

"

l ^
^ ^

h
h h

limf x x a
f x f a

x a
= -

-

"

l ^
^ ^

h
h h

You probably won’t need to refer to these formulas much as you study
Calculus II. Still, please keep in mind that the official definition of a function’s
derivative is always cast in terms of a limit.

For a more detailed look at how these formulas are developed, see Calculus
For Dummies by Mark Ryan (Wiley).

Knowing two notations for derivatives
Students often find the notation for derivatives — especially Leibniz notation 

dx
d — confusing. To make things simple, think of this notation as a unary 

operator that works in a similar way to a minus sign.

A minus sign attaches to the front of an expression, changing the value of
that expression to its negative. Evaluating the effect of this sign on the
expression is called distribution, which produces a new but equivalent
expression. For example:

–(x2 + 4x – 5) = –x2 – 4x + 5
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Similarly, the notation dx
d attaches to the front of an expression, changing 

the value of that expression to its derivative. Evaluating the effect of this nota-
tion on the expression is called differentiation, which also produces a new but
equivalent expression. For example:

dx
d (x2 + 4x – 5) = 2x + 4

The basic notation remains the same even when an expression is recast as a
function. For example, given the function y = f(x) = x2 + 4x – 5, here’s how you
differentiate:

dx
dy

= dx
d f(x) = 2x + 4

The notation dx
dy

, which means “the change in y as x changes,” was first used 
by Gottfried Leibniz, one of the two inventors of calculus (the other inventor
was Isaac Newton). An advantage of Leibniz notation is that it explicitly tells
you the variable over which you’re differentiating — in this case, x. When this
information is easily understood in context, a shorter notation is also available:

y' = f'(x) = 2x + 4

You should be comfortable with both of these forms of notation. I use them
interchangeably throughout this book.

Understanding differentiation
Differentiation — the calculation of derivatives — is the central topic of
Calculus I and makes an encore appearance in Calculus II.

In this section, I give you a refresher on some of the key topics of differentia-
tion. In particular, the 17 need-to-know derivatives are here and, for your con-
venience, in the Cheat Sheet just inside the front cover of this book. And if
you’re shaky on the Chain Rule, I offer you a clear explanation that gets you
up to speed.

Memorizing key derivatives
The derivative of any constant is always 0:

dx
d n = 0

The derivative of the variable by which you’re differentiating (in most cases, x)
is 1:

dx
d x = 1
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Here are three more derivatives that are important to remember:

dx
d ex = ex

dx
d nx = nx ln n

dx
d ln x = x

1

You need to know each of these derivatives as you move on in your study of
calculus.

Derivatives of the trig functions
The derivatives of the six trig functions are as follows:

dx
d sin x = cos x

dx
d cos x = –sin x

dx
d tan x = sec2 x

dx
d cot x = –csc2 x

dx
d sec x = sec x tan x

dx
d csc x = –csc x cot x

You need to know them all by heart.

Derivatives of the inverse trig functions
Two notations are commonly used for inverse trig functions. One is the addi-
tion of –1 to the function: sin–1, cos–1, and so forth. The second is the addition
of arc to the function: arcsin, arccos, and so forth. They both mean the same
thing, but I prefer the arc notation, because it’s less likely to be mistaken for
an exponent.

I know that asking you to memorize these functions seems like a cruel joke.
But you really need them when you get to trig substitution in Chapter 7, so at
least have a looksie:

arcsindx
d x

x1
1

2
=

-

arccosdx
d x

x1
1

2
= -

-

arctandx
d x

x1
1

2=
+

cotdx
d x

x1
1arc 2= -

+
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secdx
d x

x x 1
1arc

2
=

-

dx
d x

x x 1
1arccsc

2
= -

-

Notice that derivatives of the three “co” functions are just negations of the
three other functions, so your work is cut in half.

The Sum Rule
In textbooks, the Sum Rule is often phrased: The derivative of the sum of
functions equals the sum of the derivatives of those functions:

dx
d [f(x) + g(x)] = dx

d f(x) + dx
d g(x)

Simply put, the Sum Rule tells you that differentiating long expressions term
by term is okay. For example, suppose that you want to evaluate the following:

dx
d (sin x + x4 – ln x)

The expression that you’re differentiating has three terms, so by the Sum
Rule, you can break this into three separate derivatives and solve them 
separately:

= dx
d sin x + dx

d x4 – dx
d ln x

= cos x + 4x3 – x
1

Note that the Sum Rule also applies to expressions of more than two terms.
It also applies regardless of whether the term is positive or negative. Some
books call this variation the Difference Rule, but you get the idea.

The Constant Multiple Rule
A typical textbook gives you this sort of definition for the Constant Multiple
Rule: The derivative of a constant multiplied by a function equals the product
of that constant and the derivative of that function:

dx
d nf(x) = n dx

d f(x)

In plain English, this rule tells you that moving a constant outside of a deriva-
tive before you differentiate is okay. For example:

dx
d 5 tan x

To solve this, move the 5 outside the derivative, and then differentiate:

= 5 dx
d tan x

= 5 sec2 x
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The Power Rule
The Power Rule tells you that to find the derivative of x raised to any power,
bring down the exponent as the coefficient of x, and then subtract 1 from the
exponent and use this as your new exponent. Here’s the general form:

dx
d xn = nxn–1

Here are a few examples:

dx
d x2 = 2x

dx
d x3 = 3x2

dx
d x10 = 10x9

When the function that you’re differentiating already has a coefficient, multi-
ply the exponent by this coefficient. For example:

dx
d 2x4 = 8x3

dx
d 7x6 = 42x5

dx
d 4x100 = 400x99

The Power Rule also extends to negative exponents, which allows you to dif-
ferentiate many fractions. For example:

dx
d

x
1

5

= dx
d x–5

= –5x–6

= 
x
5

6-

It also extends to fractional exponents, which allows you to differentiate
square roots and other roots:

dx
d x x3

1
3
1

3
2

= -
c m
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The Product Rule
The derivative of the product of two functions f(x) and g(x) is equal to the
derivative of f(x) multiplied by g(x) plus the derivative of g(x) multiplied by
f(x). That is:

dx
d [f(x) · g(x)]

= f'(x) · g(x) + g'(x) · f(x)

Practice saying the Product Rule like this: “The derivative of the first function
times the second plus the derivative of the second times the first.” This
encapsulates the Product Rule and sets you up to remember the Quotient
Rule (see the next section).

For example, suppose that you want to differentiate ex sin x. Start by breaking
the problem out as follows:

dx
d ex sin x = sin sindx

d e x dx
d x ex x+c cm m

Now, you can evaluate both derivatives, which I underline, without much 
confusion:

= ex · sin x + cos x · ex

You can clean this up a bit as follows:

= ex (sin x + cos x)

The Quotient Rule

dx
d

g x
f x

g x

f x g x g x f x
2=

-$ $l l

^

^
f

^

^ ^ ^ ^

h

h
p

h

h h h h

Practice saying the Quotient Rule like this: “The derivative of the top function
times the bottom minus the derivative of the bottom times the top, over the
bottom squared.” This is similar enough to the Product Rule that you can
remember it.

For example, suppose that you want to differentiate the following:

tandx
d

x
x 4

c m
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As you do with the Product Rule example, start by breaking the problem out
as follows:

tan

tan tan

x
dx
d x x dx

d x x
2

4 4

=
-$ $c cm m

Now, evaluate the two derivatives:

tan
tan sec

x
x x x x4

2

3 2 4

=
-$ $

This answer is fine, but you can clean it up by using some algebra plus the
five basic trig identities from earlier in this chapter. (Don’t worry too much
about these steps unless your professor is particularly unforgiving.)

= 
tan

tan
x

x x4
2

3

– (x4 sec2 x cot2 x)

= tan cos sin
cos

x
x x

x x
x4 13

4
2 2

2

- d dn n

= 4x3 cot x – x4 csc2 x

= x3 (4 cot x – x csc2 x)

The Chain Rule
I’m aware that the Chain Rule is considered a major sticking point in Calculus I,
so I take a little time to review it. (By the way, contrary to popular belief,
the Chain Rule isn’t “If you don’t follow the rules in your Calculus class, the
teacher gets to place you in chains.” Such teaching methods are now consid-
ered questionable and have been out of use in the classroom since at least
the 1970s.)

The Chain Rule allows you to differentiate nested functions — that is, func-
tions within functions. It places no limit on how deeply nested these functions
are. In this section, I show you an easy way to think about nested functions,
and then I show you how to apply the Chain Rule simply.

Evaluating functions from the inside out
When you’re evaluating a nested function, you begin with the inner function
and move outward. For example:

f(x) = e2x

In this case, 2x is the inner function. To see why, suppose that you want to
evaluate f(x) for a given value of x. To keep things simple, say that x = 0. After
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plugging in 0 for x, your first step is to evaluate the inner function, which I
underline:

Step 1: e2(0) = e0

Your next step is to evaluate the outer function:

Step 2: e0 = 1

The terms inner function and outer function are determined by the order in
which the functions get evaluated. This is true no matter how deeply nested
these functions are. For example:

lng x e x3 6
3

= -
^ `h j

Suppose that you want to evaluate g(x). To keep the numbers simple, this
time let x = 2. After plugging in 2 for x, here’s the order of evaluation from the
inner function to the outer:

Step 1: ln lne e( )3 2 6
3

0
3

=-
` `j j

Step 2: ln ln 1e0
3 3

=` `j j

Step 3: ln ln1 1
3 3
=` ^j h

Step 4: (ln 1)3 = 03

Step 5: 03 = 0

The process of evaluation clearly lays out the five nested functions of g(x)
from inner to outer.

Differentiating functions from the outside in
In contrast to evaluation, differentiating a function by using the Chain Rule
forces you to begin with the outer function and move inward.

Here’s the basic Chain Rule the way that you find it in textbooks:

dx
d f(g(x)) = f'(g(x)) · g'(x)

To differentiate nested functions by using the Chain Rule, write down the
derivative of the outer function, copying everything inside it, and multiply
this result by the derivative of the next function inward.

This explanation may seem a bit confusing, but it’s a lot easier when you
know how to find the outer function, which I explain in the previous section,
“Evaluating functions from the inside out.” A couple of examples should help.
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For example, suppose that you want to differentiate the nested function sin 2x.
The outer function is the sine portion, so this is where you start:

dx
d sin 2x = cos 2x · dx

d x2

To finish, you still need to differentiate the underlined portion, 2x:

= cos 2x · 2

Rearranging this solution to make it more presentable gives you your final
answer:

= 2 cos 2x

When you differentiate more than two nested functions, the Chain Rule really
lives up to its name: As you break down the problem step by step, you string
out a chain of multiplied expressions.

For example, suppose that you want to differentiate sin3 ex. Remember from
the earlier section, “Noting trig notation,” that the notation sin3 ex really
means (sin ex)3. This rearrangement makes clear that the outer function is
the power of 3, so begin differentiating with this function:

dx
d (sin ex)3 = 3(sin ex)2 · dx

d (sin ex)

Now, you have a smaller function to differentiate, which I underline:

= 3(sin ex)2 · cos ex · dx
d e x

Only one more derivative to go:

= 3(sin ex)2 · cos ex · ex

Again, rearranging your answer is customary:

= 3ex cos ex sin2 ex

Finding Limits by Using L’Hospital’s Rule
L’Hospital’s Rule is all about limits and derivatives, so it fits better with
Calculus I than Calculus II. But some colleges save this topic for Calculus II.

So, even though I’m addressing this as a review topic, fear not: Here, I give
you the full story of L’Hospital’s Rule, starting with how to pronounce
L’Hospital (low-pee-tahl).
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L’Hospital’s Rule provides a method for evaluating certain indeterminate forms
of limits. First, I show you what an indeterminate form of a limit looks like,
with a list of all common indeterminate forms. Next, I show you how to use
L’Hospital’s Rule to evaluate some of these forms. And finally, I show you how
to work with the other indeterminate forms so that you can evaluate them.

Understanding determinate and 
indeterminate forms of limits
As you discover earlier in this chapter, in “Knowing your limits,” you can
evaluate many limits by simply replacing the limit variable with the number
that it approaches. In some cases, this replacement results in a number, so
this number is the value of the limit that you’re seeking. In other cases, this
replacement gives you an infinite value (either +∞ or –∞), so the limit does
not exist (DNE).

Table 2-6 shows a list of some functions that often cause confusion.

Table 2-6 Limits of Some Common Functions 
Case f(x) = g(x) = Function Limit

#1 0 ∞ g x
f x
^

^

h

h
0

#2 0 ∞ f x
(g x )

^ h 0

#3 C ≠ 0 0 g x
f x
^

^

h

h
DNE

#4 ±∞ 0 g x
f x
^

^

h

h
DNE

To understand how to think about these four cases, remember that a limit
describes the behavior of a function very close to, but not exactly at, a value
of x.

In the first and second cases, f(x) gets very close to 0 and g(x) explodes to 

infinity, so both 
g x
f x
^

^

h

h
and f(x)g(x) approach 0. In the third case, f(x) is a con-

stant c other than 0 and g(x) approaches 0, so the fraction 
g x
f x
^

^

h

h
explodes to 

infinity. And in the fourth case, f(x) explodes to infinity and g(x) approaches 0, 

so the fraction 
g x
f x
^

^

h

h
explodes to infinity.
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In each of these cases, you have the answer you’re looking for — that is, you
know whether the limit exists and, if so, its value — so these are all called
determinate forms of a limit.

In contrast, however, sometimes when you try to evaluate a limit by replace-
ment, the result is an indeterminate form of a limit. Table 2-7 includes two
common indeterminate forms.

Table 2-7 Two Indeterminate Forms of Limits
Case f(x) = g(x) = Function Limit

#1 0 0 g x
f x
^

^

h

h
Indeterminate

#2 ±∞ ±∞ g x
f x
^

^

h

h
Indeterminate

In these cases, the limit becomes a race between the numerator and denomi-
nator of the fractional function. For example, think about the second example
in the chart. If f(x) crawls toward ∞ while g(x) zooms there, the fraction
becomes bottom heavy and the limit is 0.

But if f(x) zooms to ∞ while g(x) crawls there, the fraction becomes top
heavy and the limit is ∞ — that is, DNE. And if both functions move toward 0
proportionally, this proportion becomes the value of the limit.

When attempting to evaluate a limit by replacement saddles you with either
of these forms, you need to do more work. Applying L’Hospital’s Rule is the
most reliable way to get the answer that you’re looking for.

Introducing L’Hospital’s Rule
Suppose that you’re attempting to evaluate the limit of a function of the form 

g x
f x
^

^

h

h
. When replacing the limit variable with the number that it approaches 

results in either 0
0 or !

!
3
3 , L’Hospital’s Rule tells you that the following equa-

tion holds true:

lim lim
g x
f x

g x
f x

x c x c
=

" " l

l

^

^

^

^

h

h

h

h

Note that c can be any real number as well as ∞ or –∞.
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As an example, suppose that you want to evaluate the following limit:

lim sinx
x

x 0

3

"

Replacing x with 0 in the function leads to the following result:

sin0
0

0
03

=

This is one of the two indeterminate forms that L’Hospital’s Rule applies to,
so you can draw the following conclusion:

lim sin lim
sinx

x
x

x
x x0

3

0

3

=
" " l

l

^

_

h

i

Next, evaluate the two derivatives:

lim cosx
x3

x 0

2

=
"

Now, use this new function to try another replacement of x with 0 and see
what happens:

cos0
3 0

1
0

2

=
_ i

This time, the result is a determinate form, so you can evaluate the original
limit as follows:

lim sinx
x 0

x 0

3

=
"

In some cases, you may need to apply L’Hospital’s Rule more than once to get
an answer. For example:

lim
x
e

x

x

5
"3

Replacement of x with ∞ results in the indeterminate form 3
3 , so you can use

L’Hospital’s Rule:

lim lim
x5e

e e
x

x

x

x

5 4=
" "3 3

In this case, the new function gives you the same indeterminate form, so use
L’Hospital’s Rule again:

lim
x20

e
x

x

3=
"3
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The same problem arises, but again you can use L’Hospital’s Rule. You can
probably see where this example is going, so I fast forward to the end:

lim
x60

e
x

x

2=
"3

lim x120
e

x

x

=
"3

lim 120
e

x

x

=
"3

When you apply L’Hospital’s Rule repeatedly to a problem, make sure that
every step along the way results in one of the two indeterminate forms that
the rule applies to.

At last! The process finally yields a function with a determinate form:

120 120
e 3 3= =

3

Therefore, the limit does not exist.

Alternative indeterminate forms
L’Hospital’s Rule applies only to the two indeterminate forms 0

0 and !
!
3
3 . 

But limits can result in a variety of other indeterminate forms for which
L’Hospital’s Rule doesn’t hold. Table 2-8 is a list of the indeterminate forms
that you’re most likely to see.

Table 2-8 Five Cases of Indeterminate Forms Where You 
Can’t Apply L’Hospital’s Rule Directly

Case f(x) = g(x) = Function Form

#1 0 ∞ f (x) · g (x) Indeterminate

#2 ∞ ∞ f (x) – g (x) Indeterminate

#3 0 0 f (x)g(x) Indeterminate

#4 ∞ 0 f (x)g(x) Indeterminate

#5 1 ∞ f (x)g(x) Indeterminate

Because L’Hospital’s Rule doesn’t hold for these indeterminate forms, apply-
ing the rule directly gives you the wrong answer.

These indeterminate forms require special attention. In this section, I show you
how to rewrite these functions so that you can then apply L’Hospital’s Rule.
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Case #1: 0 · ∞
When f(x) = 0 and g(x) = ∞, the limit of f(x) · g(x) is the indeterminate form 
0 · ∞, which doesn’t allow you to use L’Hospital’s Rule. To evaluate this limit,
rewrite this function as follows:

f(x) · g(x) = 

g x

f x
1
^

^

h

h

The limit of this new function is the indeterminate form 0
0 , which allows you 

to use L’Hospital’s Rule. For example, suppose that you want to evaluate the
following limit:

lim cotx x
x 0"

+

Replacing x with 0 gives you the indeterminate form 0 · ∞, so rewrite the limit
as follows:

lim

cotx

x
1x 0

=
"

+

c m

This can be simplified a little by using the inverse trig identity for cot x:

lim tanx
x

x 0
=

"
+

Now, replacing x with 0 gives you the indeterminate for 0
0 , so you can apply

L’Hospital’s Rule.

lim
tanx

x
x 0

=
"

+ l

l

^

^

h

h

lim
sec x

1
x 0

2=
"

+

At this point, you can evaluate the limit directly by replacing x with 0:

= 1
1 = 1

Therefore, the limit evaluates to 1.

Case #2: ∞ – ∞
When f(x) = ∞ and g(x) = ∞, the limit of f(x) – g(x) is the indeterminate form
∞ – ∞, which doesn’t allow you to use L’Hospital’s Rule. To evaluate this
limit, try to find a common denominator that turns the subtraction into a
fraction. For example:

lim cot cscx x
x 0

-
"

+
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In this case, replacing x with 0 gives you the indeterminate form ∞ – ∞. A little
tweaking with the Basic Five trig identities (see “Identifying some important
trig identities” earlier in this chapter) does the trick:

lim sin
cos

sinx
x

x
1

x 0
= -

"
+

lim sin
cos

x
x 1

x 0
=

-
"

+

Now, replacing x with 0 gives you the indeterminate form 0
0 , so you can use

L’Hospital’s Rule:

lim
sin

cos
x

x 1
x 0

=
-

"
+ l

l

^

^

h

h

lim cos
sin

x
x

x 0
=

-
"

+

At last, you can evaluate the limit by directly replacing x with 0.

= 1
0 = 0

Therefore, the limit evaluates to 0.

Cases #3, #4, and #5: 00, ∞0, and 1∞

In the following three cases, the limit of f(x)g(x) is an indeterminate form that
doesn’t allow you to use L’Hospital’s Rule:

� When f(x) = 0 and g(x) = 0

� When f(x) = ∞ and g(x) = 0

� When f(x) = 1 and g(x) = ∞

This indeterminate form 1∞ is easy to forget because it seems weird. After all,
1x = 1 for every real number, so why should 1∞ be any different? In this case,
infinity plays one of its many tricks on mathematics. You can find out more
about some of these tricks in Chapter 16.

For example, suppose that you want to evaluate the following limit:

lim x
x

x

0"

As it stands, this limit is of the indeterminate form 00.

Fortunately, I can show you a trick to handle these three cases. As with so many
things mathematical, mere mortals such as you and me probably wouldn’t dis-
cover this trick, short of being washed up on a desert island with nothing to do
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but solve math problems and eat coconuts. However, somebody did the hard
work already. Remembering this following recipe is a small price to pay:

1. Set the limit equal to y.

limy x
x

x

0
=

"

2. Take the natural log of both sides, and then do some log rolling:

ln ln limy x
x

x

0
=

"

Here are the two log rolling steps:

• First, roll the log inside the limit:

lim lnx
x

x

0
=

"

This step is valid because the limit of a log equals the log of a limit
(I know, those words veritably roll off the tongue).

• Next, roll the exponent over the log:

lim lnx x
x 0

=
"

This step is also valid, as I show you earlier in this chapter when I
discuss the log function in “Graphing common functions.”

3. Evaluate this limit as I show you in “Case #1: 0 · ∞.”

Begin by changing the limit to a determinate form:

lim ln

x

x
1x 0

=
"

At last, you can apply L’Hospital’s Rule:

lim
ln

x

x

1x 0
1

1

=
"

c

^

m

h

lim

x

x
1

1

x 0
2

=
-

"

Now, evaluating the limit isn’t too bad:

lim x
x

x 0

2

= -
"

lim x 0
x 0

= - =
"

Wait! Remember that way back in Step 2 you set this limit equal to ln y.
So you have one more step!
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4. Solve for y.

ln y = 0

y = 1

Yes, this is your final answer, so lim x 1
x

x

0
=

"

.

This recipe works with all three indeterminate forms that I talk about at the
beginning of this section. Just make sure that you keep tweaking the limit until
you have one of the two forms that are compatible with L’Hospital’s Rule.
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Chapter 3

From Definite to Indefinite:
The Indefinite Integral

In This Chapter
� Approximating area in five different ways

� Calculating sums and definite integrals

� Looking at the Fundamental Theorem of Calculus (FTC)

� Seeing how the indefinite integral is the inverse of the derivative

� Clarifying the differences between definite and indefinite integrals

The first step to solving an area problem — that is, finding the area of a
complex or unusual shape on the graph — is expressing it as a definite

integral. In turn, you can evaluate a definite integral by using a formula based
on the limit of a Riemann sum (as I show you in Chapter 1).

In this chapter, you get down to business calculating definite integrals. First,
I show you a variety of different ways to estimate area. All these methods
lead to a better understanding of the Riemann sum formula for the definite
integral. Next, you use this formula to find exact areas. This rather hairy
method of calculating definite integrals prompts a search for a better way.

This better way is the indefinite integral. I show you how the indefinite inte-
gral provides a much simpler way to calculate area. Furthermore, you find a
surprising link between differentiation (which is the focus of Calculus I) and
integration. This link, called the Fundamental Theorem of Calculus, shows that
the indefinite integral is really an anti-derivative (the inverse of the derivative).

To finish up, I show you how using an indefinite integral to evaluate a definite
integral results in signed area. I also clarify the differences between definite
and indefinite integrals so that you never get them confused. By the end of
this chapter, you’re ready for Part II, which focuses on an abundance of meth-
ods for calculating the indefinite integral.
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Approximate Integration
Finding the exact area under a curve — that is, solving an area problem (see
Chapter 1) — is one of the main reasons that integration was invented. But
you can approximate area by using a variety of methods. Approximating area
is a good first step toward understanding how integration works.

In this section, I show you five different methods for approximating the solu-
tion to an area problem. Generally speaking, I introduce these methods in the
order of increasing difficulty and effectiveness. The first three involve manip-
ulating rectangles.

� The first two methods — left and right rectangles — are the easiest to
use, but they usually give you the greatest margin of error.

� The Midpoint Rule (slicing rectangles) is a little more difficult, but it usu-
ally gives you a slightly better estimate.

� The Trapezoid Rule requires more computation, but it gives an even
better estimate.

� Simpson’s Rule is the most difficult to grasp, but it gives the best
approximation and, in some cases, provides you with an exact measure-
ment of area.

Three ways to approximate 
area with rectangles
Slicing an irregular shape into rectangles is the most common approach to
approximating its area (see Chapter 1 for more details on this approach). In
this section, I show you three different techniques for approximating area
with rectangles.

Using left rectangles
You can use left rectangles to approximate the solution to an area problem
(see Chapter 1). For example, suppose that you want to approximate the
shaded area in Figure 3-1 by using four left rectangles.

To draw these four rectangles, start by dropping a vertical line from the func-
tion to the x-axis at the left-hand limit of integration — that is, x = 0. Then drop
three more vertical lines from the function to the x-axis at x = 2, 4, and 6. Next,
at the four points where these lines cross the function, draw horizontal lines
from left to right to make the top edges of the four rectangles. The left and top
edges define the size and shape of each left rectangle.
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To measure the areas of these four rectangles, you need the width and height
of each. The width of each rectangle is obviously 2. The height and area of each
is determined by the value of the function at its left edge, as shown in Table 3-1.

Table 3-1 Approximating Area by Using Left Rectangles
Rectangle Width Height Area

#1 2 02 + 1 = 1 2

#2 2 22 + 1 = 5 10

#3 2 42 + 1 = 17 34

#4 2 62 + 1 = 37 74

To approximate the shaded area, add up the areas of these four rectangles:

x dx1 2 10 34 74 1202

0

8

.+ + + + =# _ i

Using right rectangles
Using right rectangles to approximate the solution to an area problem is vir-
tually the same as using left rectangles. For example, suppose that you want
to use six right rectangles to approximate the shaded area in Figure 3-2.

To draw these rectangles, start by dropping a vertical line from the function
to the x-axis at the right-hand limit of integration — that is, x = 3. Next, drop
five more vertical lines from the function to the x-axis at x = 0.5, 1, 1.5, 2, and
2.5. Then, at the six points where these lines cross the function, draw hori-
zontal lines from right to left to make the top edges of the six rectangles. The
right and top edges define the size and shape of each left rectangle.

x
4

y
y = x 2 + 1

6 82
1 5

17

37Figure 3-1:
Approxi-

mating

x dx12

0

8

+# _ i

by using
four left

rectangles.
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To measure the areas of these six rectangles, you need the width and height
of each. Each rectangle’s width is 0.5. Its height and area are determined by
the value of the function at its right edge, as shown in Table 3-2.

Table 3-2 Approximating Area by Using Right Rectangles
Rectangle Width Height Area

#1 0.5 . .0 5 0 707. 0.354

#2 0.5 1 1= 0.5

#3 0.5 . .1 5 1 225. 0.613

#4 0.5 .2 1 414. 0.707

#5 0.5 . .2 5 1 581. 0.791

#6 0.5 .3 1 732. 0.866

To approximate the shaded area, add up the areas of these six rectangles:

. . . . . . .x dx 0 354 0 5 0 613 0 707 0 791 0 866 3 831
0

3

. + + + + + =#

Finding a middle ground: The Midpoint Rule
Both left and right rectangles give you a decent approximation of area. So, it
stands to reason that slicing an area vertically and measuring the height of
each rectangle from the midpoint of each slice might give you a slightly better
approximation of area.

x

y

1 2 3

y = xFigure 3-2:
Approxi-

mating 

x dx
0

3

#

by using
six right

rectangles.
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For example, suppose that you want to use midpoint rectangles to approxi-
mate the shaded area in Figure 3-3.

To draw these three rectangles, start by drawing vertical lines that intersect 
both the function and the x-axis at x = 0, π

3 , π
3

2 , and π. Next, find where the 

midpoints of these three regions — that is, π
6 , π

2 , and π
6

5 — intersect the 

function. Now, draw horizontal lines through these three points to make the
tops of the three rectangles.

To measure these three rectangles, you need the width and height of each to 
compute the area. The width of each rectangle is π

3 , and the height is given in
Table 3-3.

Table 3-3 Approximating Area by Using the Midpoint Rule
Rectangle Width Height Area

#1 π
3 sin π

6 = 2
1 π

6

#2 π
3 sin π

2 = 1 π
3

#3 π
3 sin π

6 = 2
1 π

6

To approximate the shaded area, add up the areas of these three rectangles:

.sinx dx π π π π
6 3 6 3

2 2 0944
π

0

. .+ + =#

x

y

π π
3

2π
3 y = sinx

Figure 3-3:
Approxi-

mating 

sin x dx
π

0

#

by using
three

midpoint
rectangles.
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The slack factor
The formula for the definite integral is based on Riemann sums (see Chapter 1).
This formula allows you to add up the area of infinitely many infinitely thin 
rectangular slices to find the exact solution to an area problem.

And here’s the strange part: Within certain parameters, the Riemann sum for-
mula doesn’t care how you do the slicing. All three slicing methods that I dis-
cuss in the previous section work equally well. That is, although each method
yields a different approximate area for a given finite number of slices, all these
differences are smoothed over when the limit is applied. In other words, all
three methods work to provide you the exact area for infinitely many slices.

I call this feature of measuring rectangles the slack factor. Understanding the
slack factor helps you understand why using rectangles drawn at the left end-
point, right endpoint, or midpoint all lead to the same exact value of an area:
As you measure progressively thinner slices, the slack factor never increases
and tends to decrease. As the number of slices approaches ∞, the width of
each slice approaches 0, so the slack factor also approaches 0.

Figure 3-4 shows the range of this slack in choosing a rectangle. In this exam-
ple, to find the area under f(x), you need to measure a rectangle inside the
given slice. The height of this rectangle must be inclusively between p and q,
the local maximum and minimum of f(x). Within these parameters, however,
you can measure any rectangle.

p

q ƒ(x )

Figure 3-4:
For each

slice you’re
measuring,

you can
use any

rectangle
that passes
through the
function at

one point or
more.
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Two more ways to approximate area
Although slicing a region into rectangles is the simplest way to approximate
its area, rectangles aren’t the only shape that you can use. For finding many
areas, other shapes can yield a better approximation in fewer slices.

In this section, I show you two common alternatives to rectangular slicing:
the Trapezoid Rule (which, not surprisingly, uses trapezoids) and Simpson’s
Rule (which uses rectangles topped with parabolas).

Feeling trapped? The Trapezoid Rule
In case you feel restricted — dare I say boxed in? — by estimating areas with
only rectangles, you can get an even closer approximation by drawing trape-
zoids instead of rectangles.

For example, suppose that you want to use six trapezoids to estimate this
area:

x dx9 2

3

3

-
-

#

You can probably tell just by looking at the graph in Figure 3-5 that using trape-
zoids gives you a closer approximation than rectangles. In fact, the area of a
trapezoid drawn on any slice of a function will be the average of the areas of
the left and right rectangles drawn on that slice.

y

9

1–1 2

y = 9 – x2

–2 3–3
x

Figure 3-5:
Approxi-

mating 

x dx9 2

3

3

-
-

#

by using six
trapezoids.
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To draw these six trapezoids, first plot points along the function at x = –3, –2,
–1, 0, 1, 2, and 3. Next, connect adjacent points to make the top edges of the
trapezoids. Finally, draw vertical lines through these points.

Two of the six “trapezoids” are actually triangles. This fact doesn’t affect the
calculation; just think of each triangle as a trapezoid with one height equal
to zero.

To find the area of these six trapezoids, use the formula for the area of a trape-

zoid that you know from geometry: 
w b b

2
1 2+_ i

. In this case, however, the two 

bases — that is, the parallel sides of the trapezoid — are the heights on the left
and right sides. As always, the width is easy to calculate — in this case, it’s 1.
Table 3-4 shows the rest of the information for calculating the area of each
trapezoid.

Table 3-4 Approximating Area by Using Trapezoids
Trapezoid Width Left Height Right Height Area

#1 1 9 – (–3)2 = 0 9 – (–2)2 = 5 2
1 0 5+^ h

= 2.5

#2 1 9 – (–2)2 = 5 9 – (–1)2 = 8 2
1 5 8+^ h

= 6.5

#3 1 9 – (–1)2 = 8 9 – (0)2 = 9 2
1 8 9+^ h

= 8.5

#4 1 9 – (0)2 = 9 9 – (1)2 = 8 2
1 9 8+^ h

= 8.5

#5 1 9 – (1)2 = 8 9 – (2)2 = 5 2
1 8 5+^ h

= 6.5

#6 1 9 – (2)2 = 5 9 – (3)2 = 0 2
1 5 0+^ h

= 2.5

To approximate the shaded area, find the sum of the six areas of the trapezoids:

. . . . . .x dx9 2 5 6 5 8 5 8 5 6 5 2 5 352

3

3

.- + + + + + =
-

#

Don’t have a cow! Simpson’s Rule
You may recall from geometry that you can draw exactly one circle through
any three nonlinear points. You may not recall, however, that the same is true
of parabolas: Just three nonlinear points determine a parabola.

Simpson’s Rule relies on this geometric theorem. When using Simpson’s Rule,
you use left and right endpoints as well as midpoints as these three points for
each slice.
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1. Begin slicing the area that you want to approximate into strips that
intersect the function.

2. Mark the left endpoint, midpoint, and right endpoint of each strip.

3. Top each strip with the section of the parabola that passes through
these three points.

4. Add up the areas of these parabola-topped strips.

At first glance, Simpson’s Rule seems a bit circular: You’re trying to approxi-
mate the area under a curve, but this method forces you to measure the area
inside a region that includes a curve. Fortunately, Thomas Simpson, who
invented this rule, is way ahead on this one. His method allows you to mea-
sure these strangely shaped regions without too much difficulty.

Without further ado, here’s Simpson’s Rule:

Given that n is an even number,

f x dx# ^ h ∞ f(x) dx

≈ n
b a

3
- [f(x0) + 4f(x1) + 2f(x2) + 4f(x0) + ... + 4f(x3) + 2f(x0) + 4f(x0) + f(x0)]

What does it all mean? As with every approximation method you’ve encoun-
tered, the key to Simpson’s Rule is measuring the width and height of each of
these regions (with some adjustments):

� The width is represented by n
b a- — but Simpson’s Rule adjusts this 

value to n
b a

3
- .

� The heights are represented by f(x) taken at various values of x — but
Simpson’s Rule multiplies some of these by a coefficient of either 4 or 2.
(By the way, these choices of coefficients are based on the known result
of the area under a parabola — not just picked out of the air!)

The best way to show you how this rule works is with an example. Suppose
that you want to use Simpson’s Rule to approximate the following:

x dx1

1

5

#

First, divide the area that you want to approximate into an even number of
regions — say, eight — by drawing nine vertical lines from x = 1 to x = 5. Now
top these regions off with parabolas as I show you in Figure 3-6.
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The width of each region is 0.5, so adjust this by dividing by 3:

n
b a

3
- = .

3
0 5 ≈ 0.167

Moving on to the heights, find f(x) when x = 1, 1.5, 2, ... , 4.5, and 5 (see the
second column of Table 3-5). Adjust all these values except the first and the
last by multiplying by 4 or 2, alternately.

Table 3-5 Approximating Area by Using Simpson’s Rule
n f(xn) Coefficient Total

0 f (1) = 1 1 f (1) = 1

1 f (1.5) = 0.667 4 4f (1.5) = 2.668

2 f (2) = 0.5 2 2f (2) = 1

3 f (2.5) = 0.4 4 4f (2.5) = 1.6

4 f (3) = 0.333 2 2f (3) = 0.666

5 f (3.5) = 0.290 4 4f (3.5) = 1.160

6 f (4) = 0.25 2 2f (4) = 0.5

7 f (4.5) = 0.222 4 4f (4.5) = 0.888

8 f (5) = 0.2 1 f (5) = 0.2

y

x
1 5

y = 1
x

Figure 3-6:
Approxi-

mating 

x dx1
1

5

#

by using
Simpson’s

Rule.
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Now, apply Simpson’s Rule as follows:

x dx1

1

5

#

≈ 0.167 (1 + 2.668 + 1 + 1.6 + 0.666 + 1.16 + 0.5 + 0.888 + 0.2)

= 0.167 (9.682) ≈ 1.617

So Simpson’s Rule approximates the area of the shaded region in Figure 3-6 as
1.617. (By the way, the actual area to three decimal places is about 1.609 —
so Simpson’s Rule provides a pretty good estimate.)

In fact, Simpson’s Rule often provides an even better estimate than this exam-
ple leads you to believe, because a lot of inaccuracy arises from rounding off
decimals. In this case, when you perform the calculations with enough preci-
sion, Simpson’s Rule provides the correct area to three decimal places!

Knowing Sum-Thing about
Summation Formulas

In Chapter 1, I introduce you to the Riemann sum formula for the definite
integral. This formula includes a summation using sigma notation (Σ). (Please
flip to Chapter 2 if you need a refresher on this topic.)

In practice, evaluating a summation can be a little tricky. Fortunately, three
important summation formulas exist to help you. In this section, I introduce
you to these formulas and show you how to use them. In the next section,
I show you how and when to apply them when you’re using the Riemann
sum formula to solve an area problem.

The summation formula 
for counting numbers
The summation formula for counting numbers gives you an easy way to find
the sum 1 + 2 + 3 + ... + n for any value of n:

i
n n

2
1

i

n

1
=

+

=

! ^ h
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To see how this formula works, suppose that n = 9:

i 1 2 3 4 5 6 7 8 9 45
i 1

9

= + + + + + + + + =
=

!

The summation formula for counting numbers also produces this result:

n n
2

1+^ h
= 2

9 10^ h
= 45

According to a popular story, mathematician Karl Friedrich Gauss discovered
this formula as a schoolboy, when his teacher gave the class the boring task
of adding up all the counting numbers from 1 to 100 so that he (the teacher)
could nap at his desk. Within minutes, Gauss arrived at the correct answer,
5,050, disturbing his teacher’s snooze time and making mathematical history.

The summation formula 
for square numbers
The summation formula for square numbers gives you a quick way to add up
1 + 4 + 9 + ... + n2 for any value of n:

i
n n n

6
1 2 1

i

n
2

1
=

+ +

=

! ^ ^h h

For example, suppose that n = 7:

i 1 4 9 16 25 36 49 140
i

2

1

7

= + + + + + + =
=

!

The summation formula for square numbers gives you the same answer:

n n n
6

1 2 1+ +^ ^h h
= 6

7 8 15^ ^h h
= 140

The summation formula for cubic numbers
The summation formula for cubic numbers gives you a quick way to add up
1 + 8 + 27 + ... + n3 for any value of n:

i
n n

2
1

i

n
3

2

1
=

+

=

! ^ h
= G
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For example, suppose that n = 5:

i 1 8 27 64 125 225
i

3

1

5

= + + + + =
=

!

The summation formula for cubic numbers produces the same result:

n n
2

1
2

+^ h
= G = 2

5 6
2

^ h
= G = 152 = 225

As Bad as It Gets: Calculating Definite
Integrals by Using the Riemann Sum
Formula

In Chapter 1, I introduce you to this hairy equation for calculating the definite
integral:

limf x dx f x n
b a*

n
i

i

n

a

b

1
= -

"3 =

# !^ _ ch i m= G

You may be wondering how practical this little gem is for calculating area.
That’s a valid concern. The bad news is that this formula is, indeed, hairy and
you’ll need to understand how to use it to pass your first Calculus II exam.

But I have good news, too. In the beginning of Calculus I, you work with
an equally hairy equation for calculating derivatives (see Chapter 2 for a
refresher). Fortunately, later on, you find a bunch of easier ways to calculate
derivatives.

This good news applies to integration, too. Later in this chapter, I show you
how to make your life easier. In this section, however, I focus on how to use
the Riemann sum formula to calculate the definite integral.

Before I get started, take another look at the Riemann sum formula and notice
that the right side of this equation breaks down into four separate “chunks”:

� The limit: lim
n "3

� The sum: 
i

n

1=

!

� The function: f(x*i)

� The limits of integration: n
b a-
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To solve an integral by using this formula, work backwards, step by step, 
as follows:

1. Plug the limits of integration into the formula.

2. Rewrite the function f(x*i) as a summation in terms of i and n.

3. Calculate the sum.

4. Evaluate the limit.

Plugging in the limits of integration
In this section, I show you how to calculate the following integral:

x dx2

0

4

#

This step is a no-brainer: You just plug the limits of integration — that is, the
values of a and b — into the formula:

limx dx f x n
4 0*

n
i

i

n
2

1
0

4

= -
"3 =

# ! _ ci m= G

Before moving on, I know that you just can’t go on living until you simplify 4 – 0:

lim f x n
4*

n
i

i

n

1
=

"3 =

! _ i; E

That’s it!

Expressing the function as 
a sum in terms of i and n
This is the tricky step. It’s more of an art than a science, so if you’re an art
major who just happens to be taking a Calculus II course, this just might be
your lucky day (or maybe not).

To start out, think about how you would estimate x dx2

0

4

# by using right 

rectangles, as I explain earlier in this chapter. Table 3-6 shows you how to do
this, using one, two, four, and eight rectangles.
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Table 3-6 Using Right Rectangles to Estimate x dx2

0

4

#

n Height Width Expression

1 42 4 i4 4
i

2

1

1

=

!^ ^h h

2 22 + 42 2 i2 2
i

2

1

2

=

!^ ^h h

4 12 + 22 + 32 + 42 1 i 1
i

2

1

4

=

! ^ h

8 0.52 + 12 + 1.52 + 22 + 2.52 + 32 + 3.52 + 42 0.5 . .i0 5 0 5
i

2

1

8

=

!^ ^h h

Your goal now is to find a general expression of the form 
i

n

1=

! that works for 

every value of n. In the last section, you find that n
4 produces the correct 

width. So, here’s the general expression that you’re looking for:

n
i

n
4 4

i

n 2

1=

!c cm m

Make sure that you understand why this expression works for all values of n
before moving on. The first fraction represents the height of the rectangles 
and the second fraction represents the width, expressed as n

b a- .

You can simplify this expression as follows:

n
i64

i

n

3

2

1
=

=

!

Don’t forget before moving on that the entire expression is a limit as n
approaches infinity:

lim
n

i64
n i

n

3

2

1"3 =

!

At this point in the problem, you have an expression that’s based on two vari-
ables: i and n. Remember that the two variables i and n are in the sum, and
the variable x should already have exited.
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Calculating the sum
Now you need a few tricks for calculating the summation portion of this
expression:

lim
n

i64
n i

n

3

2

1"3 =

!

You can ignore the limit in this section — it’s just coming along for the ride.
You can move a constant outside of a summation without changing the value
of that expression:

lim
n
i64

n i

n

3

2

1
=

"3 =

!

At this point, only the variables i and n are left inside the summation.

Remember that i stands for icky and n stands for nice. The variable n is nice
because you can move it outside the summation just as if it were a constant:

lim
n

i64
n i

n

3
2

1
=

"3 =

!

Solving the problem with 
a summation formula
To handle the icky variable, i, you need a little help. Earlier in the chapter, in
“Knowing Sum-Thing about Summation Formulas,” I give you some important
formulas for handling this summation and others like it.

Getting back to the example, here’s where you left off:

lim
n

i64
n i

n

3
2

1"3 =

!

To evaluate the sum i
i

n
2

1=

! , use the summation formula for square 
numbers:

lim
n

n n n64
6

1 2 1
n

3

+ +

"3
$

^ ^h h

A bit of algebra — which I omit because I know you can do it! — makes the
problem look like this:

lim n n3
64 1

3
1

n
3+ +

"3

You’re now set up for the final — and easiest — step.
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Evaluating the limit
At this point, the limit that you’ve probably been dreading all this time turns
out to be the simplest part of the problem. As n approaches infinity, the two
terms with n in the denominator approach 0, so they drop out entirely:

lim n n3
64 1

3
1

3
64

n
3+ + =

"3

Yes, this is your final answer! Please note that because you used the Riemann
sum formula, this is not an approximation, but the exact area under the curve
y = x2 from 0 to 4.

Light at the End of the Tunnel: The
Fundamental Theorem of Calculus

Finding the area under a curve — that is, solving an area problem — can be
formalized by using the definite integral (as you discover in Chapter 1). And
the definite integral, in turn, is defined in terms of the Riemann sum formula.
But, as you find out earlier in this chapter, the Riemann sum formula usually
results in lengthy and difficult calculations.

There must be a better way! And, indeed, there is.

The Fundamental Theorem of Calculus (FTC) provides the link between deriva-
tives and integrals. At first glance, these two ideas seem entirely unconnected,
so the FTC seems like a bit of mathematical black magic. On closer examina-
tion, however, the connection between a function’s derivative (its slope) and
its integral (the area underneath it) becomes clearer.

In this section, I show you the connection between slope and area. After you
see this, the FTC will make more intuitive sense. At that point, I introduce
the exact theorem and show you how to use it to evaluate integrals as anti-
derivatives — that is, by understanding integration as the inverse of 
differentiation.

Without further ado, here’s the Fundamental Theorem of Calculus (FTC) in its
most useful form:

f x f b f a
a

b

= -# l ^ ^ ^h h h
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The mainspring of this equality is the connection between f and its derivative
function f'. To solve an integral, you need to be able to undo differentiation
and find the original function f.

Many math books use the following notation for the FTC:

f x dx F b F a F x f xwhere
a

b

= - =# l^ ^ ^ ^ ^h h h h h

Both notations are equally valid, but I find this version a bit less intuitive
than the version that I give you.

The FTC makes evaluating integrals a whole lot easier. For example, suppose
that you want to evaluate the following:

sinx dx
π

0

#

This is the function that you see in Figure 3-3. The FTC allows you to solve
this problem by thinking about it in a new way. First notice that the following
statement is true:

f(x) = –cos x → f'(x) = sin x

So the FTC allows you to draw this conclusion:

sin cos cosx dx π 0
π

0

= - - -# ^ ^h h

Now you can solve this problem by using simple trig:

= 1 + 1 = 2

So the exact (not approximate) shaded area in Figure 3-3 is 2 — all without
drawing rectangles! The approximation using the Midpoint Rule (see “Finding
a middle ground: The Midpoint Rule” earlier in this chapter) is 2.0944.

As another example, here’s the integral that, earlier in the chapter, you
solved by using the Riemann sum formula:

x dx2

0

4

#

Begin by noticing that the following statement is true:

f(x) 3
1 x3 → f'(x) = x2
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Now use the FTC to write this equation:

x dx 3
1 4 3

1 02 3

0

4
3= -# c cm m

At this point, the solution becomes a matter of arithmetic:

3
64 0 3

64- =

In just three simple steps, the definite integral is solved without resorting to
the hairy Riemann sum formula!

Understanding the Fundamental
Theorem of Calculus

In the previous section, I show you just how useful the Fundamental Theorem
of Calculus (FTC) can be for finding the exact value of a definite integral with-
out using the Riemann sum formula. But why does the theorem work?

The FTC implies a connection between derivatives and integrals that isn’t
intuitively obvious. In fact, the theorem implies that derivatives and integrals
are inverse operations. It’s easy to see why other pairs of operations — such
as addition and subtraction — are inverses. But how do you see this same
connection between derivatives and integrals?

In this section, I give you a few ways to better understand this connection.
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The connection between derivatives and inte-
grals as inverse operations was first noticed by
Isaac Barrow (the teacher of Isaac Newton) in
the 17th century. Newton and Gottfried Leibniz
(the two key inventors of calculus) both made
use of it as a conjecture — that is, as a mathe-
matical statement that’s suspected to be true
but hasn’t been proven yet.

But the FTC wasn’t officially proven in all its
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200-year lag, a lot of math — most notably, real
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could prove that derivatives and integrals are
inverses.
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What’s slope got to do with it?
The idea that derivatives and integrals are connected — that is, the slope of a
curve and the area under it are linked mathematically — seems odd until you
spend some time thinking about it.

If you have a head for business, here’s a practical way to understand the con-
nection. Imagine that you own your own company. Envision a graph with a
line as your net income (money coming in) and the area under the graph as
your net savings (money in the bank). To keep this simple, imagine for the
moment that this is a happy world where you have no expenses draining
your savings account.

When the line on the graph is horizontal, your net income stays the same,
so money comes in at a steady rate — that is, your paycheck every week or
month is the same. So, your bank account (the area under the line) grows at
a steady rate as time passes — that is, as your x-value moves to the right.

But suppose that business starts booming. As the line on the graph starts
to rise, your paychecks rise proportionally. So, your bank account begins
growing at a faster rate.

Now suppose that business slows down. As the line on the graph starts to
fall, your paychecks fall proportionally. So, your bank account still grows, but
its rate of growth slows down. But beware: If business goes so sour that it can
no longer support itself, you may find that you’re dipping into savings to sup-
port the business, so for the first time your savings goes down.

In this analogy, every paycheck is like the area inside a one-unit-wide slice of
the graph. And the bank account on any particular day is like the total area
between the y-axis and that day as shown on the graph.

So, when you give it some thought, it would be hard to imagine how slope
and area could not be connected. The Fundamental Theorem of Calculus is
just the exact mathematical representation of this connection.

Introducing the area function
This connection between income (the size of your paycheck) and savings
(the amount in your bank account) is a perfect analogy for two important,
connected ideas. The income graph represents a function f(x) and the sav-
ings graph represents that function’s area function A(x).
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Figure 3-7 illustrates this connection between f(x) and A(x). This figure repre-
sents the steady income situation that I describe in the previous section. I
choose f(x) = 1 to represent income. The resulting savings graph is A(x) = x,
which rises steadily.

In comparison, look at Figure 3-8, which represents rising income. This time,
I choose f(x) = x to represent income. This function produces the area function 

A(x) = 2
1 x2, which rises at an increasing rate.

Finally, take a peek at Figure 3-9, which represents falling income. In this case,
I use f(x) = 2 – x to represent income. This function results in the area func-
tion A(x) = 2x – 2

1 x2, which rises at a decreasing rate until the original func-
tion drops below 0, and then starts falling.

Take a moment to think about these three examples. Make sure that you see
how, in a very practical sense, slope and area are connected: In other words,
the slope of a function is the qualitative factor that governs what the related
area function looks like.

A (x )

x

ƒ (x )

ƒ (x ) = x

x

A (x ) = x 21
2Figure 3-8:

The function
f(x) = x

produces an
area

function

A(x) = 2
1 x2.

ƒ (x) A (x )

A (x ) = x
ƒ (x) = 1

x x

Figure 3-7:
The function

f(x) = 1
produces an

area
function
A(x) = x.
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Connecting slope and area mathematically
In the previous section, I discuss three functions f(x) and their related area
functions A(x). Table 3-7 summarizes this information.

Table 3-7 A Closer Look at Functions 
and Their Area Functions

Description Equation of Description of Equation of Derivative of 
of Function Function Area Function Area Function Area Function

Constant f(x) = 1 Rising steadily A(x) = x A'(x) = 1

Rising f(x) = x Rising at A(x) = 1⁄2 x2 A' (x) = x
increasing rate

Falling f(x) = 2 – x Rising at decreasing A(x) = 2x – 2
1 x2 A' (x) = 2 – x

rate, and then falling 
when f(x) < 0

At this point, the big connection is only a heartbeat away. Notice that each
function is the derivative of its area function:

A'(x) = f(x)

Is this mere coincidence? Not at all. Table 3-7 just adds mathematical preci-
sion to the intuitive idea that slope of a function (that is, its derivative) is
related to the area underneath it.

Because area is mathematically described by the definite integral, as I discuss
in Chapter 1, this connection between differentiation and integration makes
a whole lot of sense. That’s why finding the area under a function — that is, 
integration — is essentially undoing a derivative — that is, anti-differentiation.

A (x )ƒ (x )

ƒ (x ) = 2 – x

x x

A (x ) = 2x – x 21
2

Figure 3-9:
The function

f(x) = 2 – x
produces an

area
function

A(x) = 2x – 

2
1 x2.

94 Part I: Introduction to Integration 

07_225226-ch03.qxd  5/1/08  5:36 PM  Page 94



Seeing a dark side of the FTC
Earlier in this chapter, I give you this piece of the Fundamental Theorem of
Calculus:

f x f b f a
a

b

= -# l ^ ^ ^h h h

Now that you understand the connection between a function f(x) and its area
function A(x), here’s another piece of the FTC:

A x f t dtt

s

x

= #^ ^h h

This piece of the theorem is generally regarded as less useful than the first
piece, and it’s also harder to grasp because of all the extra variables. I won’t
belabor it too much, but here are a few points that may help you understand
it better:

� The variable s — the lower limit of integration — is an arbitrary starting
point where the area function equals zero. In my examples in the previ-
ous section, I start the area function at the origin, so s = 0. This point
represents the day when you opened your bank account, before you
deposited any money.

� The variable x — the upper limit of integration — represents any time
after you opened your bank account. It’s also the independent variable
of the area function.

� The variable t is the variable of the function. If you were to draw a graph,
t would be the independent variable and f(t) the dependent variable. 

In short, don’t worry too much about this version of the FTC. The most impor-
tant thing is that you remember the first version and know how to use it. The
other important thing is that you understand how slope and area — that is,
derivatives and integrals — are intimately related.

Your New Best Friend: 
The Indefinite Integral

The Fundamental Theorem of Calculus gives you insight into the connection
between a function’s slope and the area underneath it — that is, between dif-
ferentiation and integration.
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On a practical level, the FTC gives you an easier way to integrate, with-
out resorting to the Riemann sum formula. This easier way is called anti-
differentiation — in other words, undoing differentiation. Anti-differentiation
is the method that you’ll use to integrate throughout the remainder of
Calculus II. It leads quickly to a new key concept: the indefinite integral.

In this section, I show you step by step how to use the indefinite integral to
solve definite integrals, and I introduce the important concept of signed area.
To finish the chapter, I make sure that you understand the important distinc-
tions between definite and indefinite integrals.

Introducing anti-differentiation
Integration without resorting to the Riemann sum formula depends upon
undoing differentiation (anti-differentiation). Earlier in this chapter, in “Light
at the End of the Tunnel: The Fundamental Theorem of Calculus,” I calculate
a few areas informally by reversing a few differentiation formulas that you
know from Calculus I. But anti-differentiation is so important that it deserves
its own notation: the indefinite integral.

An indefinite integral is simply the notation representing the inverse of the
derivative function:

dx
d f x dx f x=# ^ ^h h

Be careful not to confuse the indefinite integral with the definite integral. For
the moment, notice that the indefinite integral has no limits of integration.
Later in this chapter, in “Distinguishing definite and indefinite integrals,”
I outline the differences between these two types of integrals.

Here are a few examples that informally connect derivatives that you know
with indefinite integrals that you want to be able to solve:

dx
d

sin x = cos x → cos sinx dx x=#

dx
d

ex = ex → dxe ex x=#

dx
d

ln |x| = x
1 → lnx dx x1 =#

There’s a small but important catch in this informal analysis. Notice that the
following three statements are all true:

dx
d

sin x + 1 = cos x

dx
d

sin x – 100 = cos x

dx
d

sin x + 1,000,000 = cos x
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Because any constant differentiates to 0, you need to account for the possible
presence of a constant when integrating. So, here are the more precise formu-
lations of the indefinite integrals I just introduced:

cos sinx dx x C= +#

dx Ce ex x= +#

lnx dx x C1 = +#

The formal solution of every indefinite integral is an anti-derivative up to the
addition of a constant C, which is called the constant of integration. So, just
mechanically attach a + C whenever you evaluate an indefinite integral.

Solving area problems without
the Riemann sum formula
After you know how to solve an indefinite integral by using anti-differentiation
(as I show you in the previous section), you have at your disposal a very
useful method for solving area problems. This announcement should come as
a great relief, especially after reading the earlier section “As Bad as It Gets:
Calculating Definite Integrals by Using the Riemann Sum Formula.”

Here’s how you solve an area problem by using indefinite integrals — that is,
without resorting to the Riemann sum formula:

1. Formulate the area problem as a definite integral (as I show you in
Chapter 1).

2. Solve the definite integral as an indefinite integral evaluated between
the given limits of integration.

3. Plug the limits of integration into this expression and simplify to find
the area.

This method is, in fact, the one that you use for solving area problems for the
rest of Calculus II. For example, suppose that you want to find the shaded
area in Figure 3-10.

97Chapter 3: From Definite to Indefinite: The Indefinite Integral

07_225226-ch03.qxd  5/1/08  5:38 PM  Page 97



Here’s how you do it:

1. Formulate the area problem as a definite integral:

cosx dx3
π

π

2

2

-

#

2. Solve this definite integral as an indefinite integral:

sinx3
x

x

π

π

2

2=
= -

=

I replace the integral with the expression 3 sin x, because dx
d 3 sin x = 

3 cos x. I also introduce the notation
x

x

π

π

2

2

= -

=

. You can read it as evaluated 

from x equals π
2- to x equals π

2 . This notation is commonly used so that 
you can show your teacher that you know how to integrate and post-
pone worrying about the limits of integration until the next step.

3. Plug these limits of integration into the expression and simplify:

= 3 sin π
2 – 3 sin π

2-

As you can see, this step comes straight from the FTC, subtracting 
f(b) – f(a). Now, I just simplify this expression to find the area:

= 3 – (–3) = 6

So, the area of the shaded region in Figure 3-10 equals 6.

x

y

y = 3 cos x

π
2

π
2

3

Figure 3-10:
The shaded

area 

.cos x dx3
π

π

2

2

-

#
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Understanding signed area
In the real world, the smallest possible area is 0, so area is always a nonnega-
tive number. On the graph, however, area can be either positive or negative.

This idea of negative area relates back to a discussion earlier in this chapter,
in “Introducing the area function,” where I talk about what happens when a
function dips below the x-axis.

To use the analogy of income and savings, this is the moment when your
income dries up and money starts flowing out. In other words, you’re spend-
ing your savings, so your savings account balance starts to fall.

So, area above the x-axis is positive, but area below the x-axis is measured as
negative area.

The definite integral takes this important distinction into account. It provides
not just the area but the signed area of a region on the graph. For example,
suppose that you want to measure the shaded area in Figure 3-11.

99Chapter 3: From Definite to Indefinite: The Indefinite Integral

No C, no problem!
You may wonder why the constant of integration
C — which is so important when you’re evalu-
ating an indefinite integral — gets dropped
when you’re evaluating a definite integral. This
one is easy to explain.

Remember that every definite integral is
expressed as the difference between a function
evaluated at one point and the same function
evaluated at another point. If this function
includes a constant C, one C cancels out the
other.

For example, take the definite integral 

cos x dx

π

0

6

# . Technically speaking, this integral 

is evaluated as follows:

x 0=
sin x c

πx
6+

=

= (sin π
6 + C) – (sin 0 + C)

= 2
1 + C – 0 – C = 2

1

As you can clearly “C,” the two Cs cancel each
other out, so there’s no harm in dropping them at
the beginning of the evaluation rather than
at the end.
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Here’s how you do it using the steps that I outline in the previous section:

1. Formulate the area problem as a definite integral:

cosx dx3
π

π

2

2
3

#

2. Solve this definite integral as an indefinite integral:

sinx3
x

x

π

π

2

2
3

=
=

=

3. Plug these limits of integration into the expression and simplify:

= 3 sin π
2

3 – 3 sin π
2

= –3 – 3 = –6

So, the signed area of the shaded region in Figure 3-11 equals –6. As you
can see, the computational method for evaluating the definite integral
gives the signed area automatically.

As another example, suppose that you want to find the total area of the two
shaded regions in Figure 3-10 and Figure 3-11. Here’s how you do it using the
steps that I outline in the previous section:

1. Formulate the area problem as a definite integral:

cosx dx
π

π

2

2
3

-

#

x

y

y = 3 cos x dx

π
2

3π
2

Figure 3-11:
Measuring

signed area
on the graph

cos x dx3
π

π

2

2
3

# .
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2. Solve this definite integral as an indefinite integral:

sinx3
x

x

π

π

2

2
3

=
= -

=

3. Plug these limits of integration into the expression and simplify:

= –3 sin π
2

3 – 3 sin π
2

= 3 – 3 = 0

This time, the signed area of the shaded region is 0. This answer makes
sense, because the unsigned area above the x-axis equals the unsigned
area below it, so these two areas cancel each other out.

Distinguishing definite and 
indefinite integrals
Don’t confuse the definite and indefinite integrals. Here are the key differ-
ences between them:

A definite integral

� Includes limits of integration (a and b)

� Represents the exact area of a specific set of points on a graph

� Evaluates to a number

An indefinite integral

� Doesn’t include limits of integration

� Can be used to evaluate an infinite number of related definite integrals

� Evaluates to a function

For example, here’s a definite integral:

sec x dx

π

2

0

4

#

As you can see, it includes limits of integration (0 and π
4 ), so you can draw a 

graph of the area that it represents. You can then use a variety of methods
to evaluate this integral as a number. This number equals the signed area
between the function and the x-axis inside the limits of integration, as I dis-
cuss earlier in “Understanding signed area.”
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In contrast, here’s an indefinite integral:

sec x dx2#

This time, the integral doesn’t include limits of integration, so it doesn’t rep-
resent a specific area. Thus, it doesn’t evaluate to a number, but to a function:

= tan x + C

You can use this function to evaluate any related definite integral. For exam-
ple, here’s how to use it to evaluate the definite integral I just gave you:

sec x dx

π

2

0

4

#

tanx
x

x π

0
4=

=

=

= 2 tan π
4 – tan 0

= 1 – 0 = 1

So, the area of the shaded region in the graph is 1.

As you can see, the indefinite integral encapsulates an infinite number
of related definite integrals. It also provides a practical means for evaluat-
ing definite integrals. Small wonder that much of Calculus II focuses on 
evaluating indefinite integrals. In Part II, I give you an ordered approach
to evaluating indefinite integrals.
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